

Build a data platform over
and on the web

Erlang User Conference 2013
Benoît Chesneau

 Erlang User Conference 2013 - Benoît Chesneau

About me

● Apache CouchDB committer and PMC member
● PSF Member
● Web craftsman
● Do opensource for a living

 Erlang User Conference 2013 - Benoît Chesneau

The big picture

 Erlang User Conference 2013 - Benoît Chesneau

What is Refuge?

● A way to store, sync, and share your data
● Decentralized
● Over and on the web
● Opensource
● Built in Erlang

 Erlang User Conference 2013 - Benoît Chesneau

Part of

 Erlang User Conference 2013 - Benoît Chesneau

Why?

● Document oriented
● Blobs can be attached to documents
● Master-master replication (P2P)
● Couchapps

Played too much with Apache CouchDB

 Erlang User Conference 2013 - Benoît Chesneau

But

● A simple way to store any blobs
● Index or render them
● And share them among people and machines
● Can work with off-line devices
● Or near you

What we really need at the
end is...

 Erlang User Conference 2013 - Benoît Chesneau

Coffer

● Multi-backend (FS, Distributed FS, S3...)
● Simple REST API: GET,PUT, POST, DELETE
● Synchronization
● All blobs are uniquely identified (content-hash)

Versatile storage service

 Erlang User Conference 2013 - Benoît Chesneau

Coffer

● Works with mobile & embedded devices
● Partials upload & downloads supported
● RESTFUL, resources visible on HTTP

Versatile storage service

 Erlang User Conference 2013 - Benoît Chesneau

 Erlang User Conference 2013 - Benoît Chesneau

Erlang Side

● A gen_server to keep all the storage backend
configuration

● gen_storage , a behaviour to keep a storage
states

● Handle conflicts in the backend. Same file can't
be uploaded by 2 clients at the same time

 Erlang User Conference 2013 - Benoît Chesneau

 Erlang User Conference 2013 - Benoît Chesneau

 Erlang User Conference 2013 - Benoît Chesneau

 Erlang User Conference 2013 - Benoît Chesneau

Synchronization
algorithm

● Create a change queue on the source
● Enumerate (list) all blobs on the source

and copy the blobs not on the target
● Enumerate is cheap (we only compare

blobs ids)
● Blobs already on the target aren't sent
● Start to watch on the change queue
● Blobs delivery guarantee

 Erlang User Conference 2013 - Benoît Chesneau

How changes queues
work in Erlang

● Queues are kept in memory and persited
to the disk from time to time

● A process / queue
● A process / watcher is maintained
● Pub/sub over websockets, event source or

longpolling

 Erlang User Conference 2013 - Benoît Chesneau

Today support

● Memory storage (ETS)
● FS Storage
● Distributed using riak-coree
● More to come (S3, Redis, Memcache)

 Erlang User Conference 2013 - Benoît Chesneau

Some tools we use

● Modified cowboy version – http server
● Hackney – http client
● Gproc for a cheap pub/sub internal system

(changing)

 Erlang User Conference 2013 - Benoît Chesneau

ping(#coffer_conn{url=URL, options=Opts}) ->
 case hackney:head(URL, [], <<>>, Opts) of
 {ok, 200, _, Client} ->
 hackney:close(Client),
 pong;
 _ ->
 pang
 end.

Hackney in action

 Erlang User Conference 2013 - Benoît Chesneau

How to use the blobs?

● No metadata on the disk
● No history
● Just blobs

 Erlang User Conference 2013 - Benoît Chesneau

Create a backup of a folder

● 3 kinds of blobs
● 1 blob for the file
● 1 blob keeping file metadata (name, type...)
● 1 blob keeping the directory structure

 Erlang User Conference 2013 - Benoît Chesneau

{
 "blobid": "blobobid",
 "prev": "prevref or null"
}

file

 Erlang User Conference 2013 - Benoît Chesneau

{
 "filename": {
 “blobid: "blobbid",
 “type”: “blob”
 },
 "foldername": {
 “blobid: "blobbid",
 “type”: “tree”
 }
}

tree

 Erlang User Conference 2013 - Benoît Chesneau

Create a backup of a folder

● Create a reference (or link) to the last version
of the tree

● Another blob with a level of indirection
● Can be signed
● Just another blob

 Erlang User Conference 2013 - Benoît Chesneau

Index your content

● “just” replicate your index
● An indexer receive {blobref, Blob, timestamp}

from the replication queue
● Can be any kind of indexer: sql, apache couchdb,

an FTS (like elasticsearch)

 Erlang User Conference 2013 - Benoît Chesneau

 Erlang User Conference 2013 - Benoît Chesneau

Behind the scene

● Mostly works like a blob server
● Except it only pass mapped data to the index
● Possibility to transform the data before indexing

(mapping)
● Multi-language

 Erlang User Conference 2013 - Benoît Chesneau

 Erlang User Conference 2013 - Benoît Chesneau

The refuge node

● Frontend to blobs servers and indexers
● Manage blobs claims and access
● Gateway to others nodes
● Forward requests
● WebRTC signaling

 Erlang User Conference 2013 - Benoît Chesneau

 Erlang User Conference 2013 - Benoît Chesneau

The hub

● True decentralized web system
● Once found nodes are directly connected
● A node can be authenticated using a signature
● Webfinger & host-meta

 Erlang User Conference 2013 - Benoît Chesneau

 Erlang User Conference 2013 - Benoît Chesneau

The hub

● Each node can open a connection to an hub
using a websocket

● A node can connect to multiple hub
● Once connected a node authenticated itself

with a signature

 Erlang User Conference 2013 - Benoît Chesneau

 Erlang User Conference 2013 - Benoît Chesneau

The hub

● Each refuge node open a connection to an
hub (websocket)

● A node can connect to multiple hub
● Once connected a node authentified itself

with a signature

 Erlang User Conference 2013 - Benoît Chesneau

?
@benoitc

http://refuge.io

Thanks to
Laurent (@lolograph) for the website and logo design

Nicolas (@nrdufour) for the code and the ideas
Others for their feedback

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

