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About me

● Apache CouchDB committer and PMC member
● PSF Member
● Web craftsman
● Do opensource for a living
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The big picture
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What is Refuge?

● A way to store, sync, and share your data
● Decentralized
● Over and on the web
● Opensource
● Built in Erlang
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Part of
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Why?

● Document oriented
● Blobs can be attached to documents
● Master-master replication (P2P)
● Couchapps

Played too much with Apache CouchDB
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But

● A simple way to store any blobs
● Index or render them
● And share them among people and machines
● Can work with off-line devices
● Or near you

What we really need at the 
end is...
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Coffer

● Multi-backend (FS, Distributed FS, S3...)
● Simple REST API: GET,PUT, POST, DELETE
● Synchronization
● All blobs are uniquely identified (content-hash)

Versatile storage service
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Coffer

● Works with mobile & embedded devices
● Partials upload & downloads supported
● RESTFUL, resources visible on HTTP

Versatile storage service
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Erlang Side

● A gen_server to keep all the storage backend 
configuration

● gen_storage , a behaviour to keep a storage 
states

● Handle conflicts in the backend. Same file can't 
be uploaded by 2 clients at the same time 
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Synchronization 
algorithm

● Create a change queue on the source 
● Enumerate (list) all blobs on the source 

and copy the blobs not on the target
● Enumerate is cheap (we only compare 

blobs ids)
● Blobs already on the target aren't sent
● Start to watch on the change queue
● Blobs delivery guarantee
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How changes queues 
work in Erlang

● Queues are kept in memory and persited 
to the disk from time to time

● A process / queue
● A process / watcher is maintained
● Pub/sub over websockets, event source or 

longpolling
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Today support

● Memory storage (ETS)
● FS Storage
● Distributed using riak-coree
● More to come (S3, Redis, Memcache)
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Some tools we use

● Modified cowboy version – http server
● Hackney – http client
● Gproc for a cheap pub/sub internal system 

(changing)
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ping(#coffer_conn{url=URL, options=Opts}) ->
    case hackney:head(URL, [], <<>>, Opts) of
        {ok, 200, _, Client} ->
            hackney:close(Client),
            pong;
        _ ->
            pang
    end.

Hackney in action
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How to use the blobs?

● No metadata on the disk
● No history
● Just blobs
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Create a backup of a folder

● 3 kinds of blobs
● 1 blob for the file
● 1 blob keeping file metadata (name, type...)
● 1 blob keeping the directory structure 
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{
  "blobid": "blobobid",
  "prev": "prevref or null"
}

file
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{
  "filename": {
    “blobid: "blobbid",
    “type”: “blob”
  },
  "foldername": {
    “blobid: "blobbid",
    “type”: “tree”
  }
}

tree
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Create a backup of a folder

● Create a reference (or link) to the last version 
of the tree 

● Another blob with a level of indirection
● Can be signed
● Just another blob
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Index your content

 

● “just” replicate your index
● An indexer receive {blobref, Blob, timestamp} 

from the replication queue
● Can be any kind of indexer: sql, apache couchdb, 

an FTS  (like elasticsearch) 
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Behind the scene

 

● Mostly works like a blob server
● Except it only pass mapped data to the index
● Possibility to transform the data before indexing

(mapping)
● Multi-language
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The refuge node

 

● Frontend to blobs servers and indexers
● Manage blobs claims and access
● Gateway to others nodes
● Forward requests
● WebRTC signaling
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The hub

 

● True decentralized web system
● Once found nodes are directly connected
● A node can be authenticated using a signature
● Webfinger & host-meta
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The hub

 

● Each  node can open a connection to an hub
using a websocket

● A node can connect to multiple hub
● Once connected a node authenticated itself

with a signature
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The hub

 

● Each refuge node open a connection to an
hub (websocket)

● A node can connect to multiple hub
● Once connected a node authentified itself

with a signature
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?
@benoitc

http://refuge.io

Thanks to
Laurent (@lolograph) for the  website and logo design

Nicolas (@nrdufour) for the code and the ideas
Others for their feedback
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