
RELX
A Dead Simple Way to Build Releases

Tuesday, June 18, 13

Topics

The basics of OTP Applications and Releases

Why Releases are important

How Relx builds Releases

How different Relx options affect the built Release

How to extend Relx

Tuesday, June 18, 13

Goal

Walk out of this talk with the ability
to create and use releases.

Tuesday, June 18, 13

What is Relx

Tool designed to build releases

Designed to integrate into a unix like suite of build tools

Tuesday, June 18, 13

OTP Application Refresher
Well defined structure

Well defined lifecycle (start, stop, semantics)

Useful metadata (including an explicit dependency graph)

Basic Building Blocks of Erlang Systems

Tuesday, June 18, 13

Well Defined Structure
!"" <name>-<version>
 !"" ebin
 # $"" <name>.app
 !"" doc
 !"" priv
 !"" include
 $"" src

Tuesday, June 18, 13

Well Defined Lifecycle
-module(echo_get_app).
-behaviour(application).

%% API.
-export([start/2,
 stop/1]).

-include("echo_get.hrl").

%%%===
%%% API
%%%===
start(_Type, _Args) ->
 Dispatch = cowboy_router:compile(?DISPATCH),
 {ok, _} = cowboy:start_http(http, 100,
 [{port, 8080}],
 [{env,
 [{dispatch, Dispatch}]}]),
 echo_get_sup:start_link().

stop(_State) ->
 ok.

Tuesday, June 18, 13

Useful Metadata
{application,echo_get,
 [{description,"Cowboy GET echo example."},
 {vsn,"0.0.0+build.1.ref5b05dba"},
 {modules,[echo_get,
 echo_get_app,
 echo_get_handler,
 echo_get_sup]},
 {registered,[]},
 {applications,[kernel,
 stdlib,
 ranch,
 cowboy]},
 {mod,{echo_get_app,[]}},
 {env,[]}]}.

Tuesday, June 18, 13

How We Start Applications
-module(echo_get).

%% API.
-export([manual_start/0]).

%%%===
%%% API
%%%===
manual_start() ->
 ok = application:start(crypto),
 ok = application:start(ranch),
 ok = application:start(cowboy),
 ok = application:start(echo_get).

Tuesday, June 18, 13

How We Start Applications
#!/bin/sh
erl -noshell -pa ebin deps/*/ebin -s echo_get manual_start \
 -eval "io:format(\"Point your browser at http://localhost:8080/?echo=test~n\")."

Tuesday, June 18, 13

http://localhost:8080/?echo=test~n
http://localhost:8080/?echo=test~n

What Do We Have?
An Erlang System where dependency information is hap hazard
(in at least two places, one of which is ignored)

A system that trusts the programmer to manually startup things
in the right order (without leaving anything out)

A system where its component parts are spread around the OS
filesystem (if we are lucky and they are even there)

Tuesday, June 18, 13

Current State of the World

Lots of systems are assembled poorly (ie, poorly organized, not using the
right abstractions, prone to failure)

Commonly deploy by simply manually copying the Apps and then running a
script that starts it (which also starts its dependencies manually)

Dependencies described and handled outside of the OTP Apps themselves
itself

Tuesday, June 18, 13

What is Needed
Something that manages and provides clear semantics around system
startup and shutdown

Something that uses the dependencies described and manages where they
occur and when they are started

Something that does the creation and packaging and of Erlang Systems
leveraging all that metadata

Something to startup and manage systems

Tuesday, June 18, 13

We Have It!

Something that manages and provides clear semantics around system
startup and shutdown - Erlang/OTP Releases

Something that uses the dependencies described and manages where they
occur and when they are started - Erlang/OTP Release

Something that does the creation and packaging and of Erlang Systems
leveraging all that metadata - Erlware’s Relx

Something to startup and manage systems - Erlang/OTP Release

or How to Build Systems the Right way

Tuesday, June 18, 13

What Exactly is a Release

A Set of built, versioned OTP Applications

Metadata that describes applications required

An explicit configuration mechanism

Optionally tarballs that can be managed and deployed

Tuesday, June 18, 13

Release Overview

Tuesday, June 18, 13

Release Metadata
{release,{"echo_get","0.0.1"},
 {erts,"5.10.1"},
 [{kernel,"2.16.1"},
 {stdlib,"1.19.1"},
 {ranch,"0.8.3"},
 {crypto,"2.3"},
 {cowboy,"0.8.5"},
 {echo_get,"0.0.1"}]}.

Tuesday, June 18, 13

Release Structure
!"" bin
 !"" echo_get
 $"" echo_get-0.0.1
!"" erts-5.10.1
!"" lib
!"" cowboy-0.8.5
!"" crypto-2.3
!"" echo_get-0.0.0+build.1.ref5b05dba
!"" kernel-2.16.1
!"" ranch-0.8.3
$"" stdlib-1.19.1
$"" releases
 $"" echo_get-0.0.1
 !"" echo_get.boot
 !"" echo_get.rel
 !"" echo_get.script
 !"" sys.config
 $"" vm.args

Tuesday, June 18, 13

Creating A Release
>relx

Starting relx build process ...
Resolving OTP Applications from directories:
 /Users/emerrit/workspace/EUC2013/echo_get/ebin
 /Users/emerrit/workspace/EUC2013/echo_get/deps
 /usr/local/Cellar/erlang/R16B/lib/erlang/lib

Resolving available releases from directories:
 /Users/emerrit/workspace/EUC2013/echo_get/ebin
 /Users/emerrit/workspace/EUC2013/echo_get/deps
 /usr/local/Cellar/erlang/R16B/lib/erlang/lib

Resolved echo_get-0.0.1
release successfully created!

Tuesday, June 18, 13

What Relx Does
Reads the configuration

Discovers the environment (Apps and Releases available)

Starting at the apps and constraints specified - does a constraint
solve to resolve the full dependency tree

Uses that information to assemble the release

Creates the release, including all metadata and support functions

Tuesday, June 18, 13

Configuration
%% -*- mode: Erlang; fill-column: 80 -*-
{release, {echo_get, "0.0.1"},
 [echo_get]}.

Tuesday, June 18, 13

An Example (echo_get)
{application,echo_get,
 [{description,"Cowboy GET echo example."},
 {vsn,"0.0.0+build.1.ref5b05dba"},
 {modules,[echo_get,
 echo_get_app,
 echo_get_handler,
 echo_get_sup]},
 {registered,[]},
 {applications,[kernel,
 stdlib,
 ranch,
 cowboy]},
 {mod,{echo_get_app,[]}},
 {env,[]}]}.

Tuesday, June 18, 13

echo_get Release Structure
!"" bin
 !"" echo_get
 $"" echo_get-0.0.1
!"" erts-5.10.1
!"" lib
!"" cowboy-0.8.5
!"" crypto-2.3
!"" echo_get-0.0.0+build.1.ref5b05dba
!"" kernel-2.16.1
!"" ranch-0.8.3
$"" stdlib-1.19.1
$"" releases
 $"" echo_get-0.0.1
 !"" echo_get.boot
 !"" echo_get.rel
 !"" echo_get.script
 !"" sys.config
 $"" vm.args

Tuesday, June 18, 13

Constraining
%% -*- mode: Erlang; fill-column: 80 -*-
{release, {echo_get, "0.0.1"},
 [echo_get,
 sasl]}.

Tuesday, June 18, 13

Constraining
%% -*- mode: Erlang; fill-column: 80 -*-
{release, {echo_get, "0.0.1"},
 [echo_get,
 {sasl, “2.3”, gte}]}.

Tuesday, June 18, 13

App Overrides
{overrides,	
 [{sexpr,	
 "../sexpr"}]}.

Tuesday, June 18, 13

Overlays
{overlay_vars,	
 "vars.config"}.
{overlay,	
 [{mkdir,	
 "log/sasl"},
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {copy,	
 "files/erl",	
 "{{erts_vsn}}/bin/erl"},
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {copy,	
 "files/nodetool",	
 "{{erts_vsn}}/bin/nodetool"},
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {template,	
 "files/app.config",	
 "etc/app.config"},
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {template,	
 "files/vm.args",	
 "etc/vm.args"}]}.

Tuesday, June 18, 13

Multiple Releases
%% -*- mode: Erlang; fill-column: 80 -*-
{release, {echo_get, "0.0.1"},
 [{echo_get, “0.0.1”}]}.

{release, {echo_get, "0.0.2"},
 [{echo_get, “0.0.2”]}.

Tuesday, June 18, 13

Easily Extendable

Simply implement the rlx_provider behaviour

Api for accessing and manipulating releases via rlx_state, rlx_release and
rlx_app_info

Tuesday, June 18, 13

Implementing a Provider
-­‐callback	
 init(rlx_state:t())	
 -­‐>	

	
 	
 	
 	
 	
 	
 	
 	
 {ok,	
 rlx_state:t()}	
 |	
 relx:error().

-­‐callback	
 do(rlx_state:t())	
 -­‐>	
 	

	
 	
 	
 	
 	
 	
 	
 	
 {ok,	
 rlx_state:t()}	
 |	
 relx:error().

-­‐callback	
 format_error(Reason::term())	
 -­‐>	

	
 	
 	
 	
 	
 	
 	
 	
 iolist().

Tuesday, June 18, 13

Adding Providers
{add_providers,	
 [my_custom_functionality]}.

Tuesday, June 18, 13

Erlware’s Relx

http://relx.org

http://erlware.org

Tuesday, June 18, 13

http://erlware.org
http://erlware.org

August 30th - 31st

http://erlangcamp.com

Tuesday, June 18, 13

http://erlangcamp.com
http://erlangcamp.com

October 11th - 12th

http://erlangcamp.com

Tuesday, June 18, 13

http://erlangcamp.com
http://erlangcamp.com

Questions??

Tuesday, June 18, 13

