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Topics

The basics of OTP Applications and Releases

Why Releases are important

How Relx builds Releases

How different Relx options affect the built Release

How to extend Relx
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Goal

Walk out of this talk with the ability 
to create and use releases.
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What is Relx

Tool designed to build releases

Designed to integrate into a unix like suite of build tools
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OTP Application Refresher
Well defined structure

Well defined lifecycle (start, stop, semantics)

Useful metadata (including an explicit dependency graph)

Basic Building Blocks of Erlang Systems
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Well Defined Structure
!"" <name>-<version>
    !"" ebin
    #   $"" <name>.app
    !"" doc 
    !"" priv
    !"" include
    $"" src
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Well Defined Lifecycle
-module(echo_get_app).
-behaviour(application).

%% API.
-export([start/2,
         stop/1]).

-include("echo_get.hrl").

%%%===================================================================
%%% API
%%%===================================================================
start(_Type, _Args) ->
    Dispatch = cowboy_router:compile(?DISPATCH),
    {ok, _} = cowboy:start_http(http, 100,
                                [{port, 8080}],
                                    [{env,
                                      [{dispatch, Dispatch}]}]),
    echo_get_sup:start_link().

stop(_State) ->
        ok.
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Useful Metadata
{application,echo_get,
             [{description,"Cowboy GET echo example."},
              {vsn,"0.0.0+build.1.ref5b05dba"},
              {modules,[echo_get,
                        echo_get_app,
                        echo_get_handler,
                        echo_get_sup]},
              {registered,[]},
              {applications,[kernel,
                             stdlib,
                             ranch,
                             cowboy]},
              {mod,{echo_get_app,[]}},
              {env,[]}]}.

Tuesday, June 18, 13



How We Start Applications
-module(echo_get).

%% API.
-export([manual_start/0]).

%%%===================================================================
%%% API
%%%===================================================================
manual_start() ->
    ok = application:start(crypto),
    ok = application:start(ranch),
    ok = application:start(cowboy),
    ok = application:start(echo_get).
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How We Start Applications
#!/bin/sh
erl -noshell -pa ebin deps/*/ebin -s echo_get manual_start \
        -eval "io:format(\"Point your browser at http://localhost:8080/?echo=test~n\")."
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What Do We Have?
An Erlang System where dependency information is hap hazard 
(in at least two places, one of which is ignored)

A system that trusts the programmer to manually startup things 
in the right order (without leaving anything out)

A system where its component parts are spread around the OS 
filesystem (if we are lucky and they are even there)
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Current State of the World

Lots of systems are assembled poorly (ie, poorly organized, not using the 
right abstractions, prone to failure) 

Commonly deploy by simply manually copying the Apps and then running a 
script that starts it (which also starts its dependencies manually)

Dependencies described and handled outside of the OTP Apps themselves 
itself
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What is Needed
Something that manages and provides clear semantics around system 
startup and shutdown

Something that uses the dependencies described and manages where they 
occur and when they are started

Something that does the creation and packaging and of Erlang Systems 
leveraging all that metadata

Something to startup and manage systems
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We Have It!

Something that manages and provides clear semantics around system 
startup and shutdown - Erlang/OTP Releases

Something that uses the dependencies described  and manages where they 
occur and when they are started - Erlang/OTP Release

Something that does the creation and packaging and of Erlang Systems 
leveraging all that metadata - Erlware’s Relx

Something to startup and manage systems - Erlang/OTP Release

or How to Build Systems the Right way
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What Exactly is a Release

A Set of built, versioned OTP Applications

Metadata that describes applications required 

An explicit configuration mechanism

Optionally tarballs that can be managed and deployed
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Release Overview
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Release Metadata
{release,{"echo_get","0.0.1"},
         {erts,"5.10.1"},
         [{kernel,"2.16.1"},
          {stdlib,"1.19.1"},
          {ranch,"0.8.3"},
          {crypto,"2.3"},
          {cowboy,"0.8.5"},
          {echo_get,"0.0.1"}]}.
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Release Structure
!"" bin
    !"" echo_get
    $"" echo_get-0.0.1
!"" erts-5.10.1
!"" lib
#   !"" cowboy-0.8.5
#   !"" crypto-2.3
#   !"" echo_get-0.0.0+build.1.ref5b05dba
#   !"" kernel-2.16.1
#   !"" ranch-0.8.3
#   $"" stdlib-1.19.1
$"" releases
    $"" echo_get-0.0.1
        !"" echo_get.boot
        !"" echo_get.rel
        !"" echo_get.script
        !"" sys.config
        $"" vm.args
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Creating A Release
>relx  
                                                                                                                                                    
Starting relx build process ...
Resolving OTP Applications from directories:
    /Users/emerrit/workspace/EUC2013/echo_get/ebin
    /Users/emerrit/workspace/EUC2013/echo_get/deps
    /usr/local/Cellar/erlang/R16B/lib/erlang/lib

Resolving available releases from directories:
    /Users/emerrit/workspace/EUC2013/echo_get/ebin
    /Users/emerrit/workspace/EUC2013/echo_get/deps
    /usr/local/Cellar/erlang/R16B/lib/erlang/lib

Resolved echo_get-0.0.1
release successfully created!
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What Relx Does
Reads the configuration

Discovers the environment (Apps and Releases available)

Starting at the apps and constraints specified  - does a constraint 
solve to resolve the full dependency tree

Uses that information to assemble the release 

Creates the release, including all metadata and support functions
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Configuration
%% -*- mode: Erlang; fill-column: 80 -*-
{release, {echo_get, "0.0.1"},
 [echo_get]}.
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An Example (echo_get)
{application,echo_get,
             [{description,"Cowboy GET echo example."},
              {vsn,"0.0.0+build.1.ref5b05dba"},
              {modules,[echo_get,
                        echo_get_app,
                        echo_get_handler,
                        echo_get_sup]},
              {registered,[]},
              {applications,[kernel,
                             stdlib,
                             ranch,
                             cowboy]},
              {mod,{echo_get_app,[]}},
              {env,[]}]}.
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echo_get Release Structure
!"" bin
    !"" echo_get
    $"" echo_get-0.0.1
!"" erts-5.10.1
!"" lib
#   !"" cowboy-0.8.5
#   !"" crypto-2.3
#   !"" echo_get-0.0.0+build.1.ref5b05dba
#   !"" kernel-2.16.1
#   !"" ranch-0.8.3
#   $"" stdlib-1.19.1
$"" releases
    $"" echo_get-0.0.1
        !"" echo_get.boot
        !"" echo_get.rel
        !"" echo_get.script
        !"" sys.config
        $"" vm.args
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Constraining
%% -*- mode: Erlang; fill-column: 80 -*-
{release, {echo_get, "0.0.1"},
 [echo_get,
  sasl]}.
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Constraining
%% -*- mode: Erlang; fill-column: 80 -*-
{release, {echo_get, "0.0.1"},
 [echo_get,
  {sasl, “2.3”, gte}]}.
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App Overrides
{overrides,	
  [{sexpr,	
  "../sexpr"}]}.
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Overlays
{overlay_vars,	
  "vars.config"}.
{overlay,	
  [{mkdir,	
  "log/sasl"},
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  {copy,	
  "files/erl",	
  "{{erts_vsn}}/bin/erl"},
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  {copy,	
  "files/nodetool",	
  "{{erts_vsn}}/bin/nodetool"},
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  {template,	
  "files/app.config",	
  "etc/app.config"},
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  {template,	
  "files/vm.args",	
  "etc/vm.args"}]}.
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Multiple Releases
%% -*- mode: Erlang; fill-column: 80 -*-
{release, {echo_get, "0.0.1"},
 [{echo_get, “0.0.1”}]}.

{release, {echo_get, "0.0.2"},
 [{echo_get, “0.0.2”]}.
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Easily Extendable

Simply implement the rlx_provider behaviour

Api for accessing and manipulating releases via rlx_state, rlx_release and  
rlx_app_info
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Implementing a Provider
-­‐callback	
  init(rlx_state:t())	
  -­‐>	
  
	
  	
  	
  	
  	
  	
  	
  	
  {ok,	
  rlx_state:t()}	
  |	
  relx:error().

-­‐callback	
  do(rlx_state:t())	
  -­‐>	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  {ok,	
  rlx_state:t()}	
  |	
  relx:error().

-­‐callback	
  format_error(Reason::term())	
  -­‐>	
  
	
  	
  	
  	
  	
  	
  	
  	
  iolist().
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Adding Providers
{add_providers,	
  [my_custom_functionality]}.
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Erlware’s Relx

http://relx.org

http://erlware.org
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August 30th - 31st

http://erlangcamp.com
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October 11th - 12th

http://erlangcamp.com
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Questions??
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