
Cons T Åhs
@lisztspace

Of Heisenberg and Hawthorne - 
measurements, visibility and guidance

fredag 14 juni 13



Exponential Growth probably 
means Success

0

150

300

450

600

2005 2006 2007 2008 2009 2010 2011 2012 2013

fredag 14 juni 13



Success does not mean that you 
do not have problems

• Doing the right things doesn’t mean you are doing 
things right

• Choosing the right technology isn’t enough - you can 
write bad programs in any language

• Fast initial growth with
• more merchants
• more customers
• expanding into new countries
• more products

• Lots of challenges..

fredag 14 juni 13



Too Agile?
• Fast pace with steady flow of new requirements
• Developers want to deliver on expectations

• short term delivery is more important than long term
• Solve problems with available resources

• problem: we want more productivity
• with money available, adding more developers is easy
• not the best idea (The Mythical Man Month, 1975)

• Long term quality and adaptability suffers
• the slowdown is gradual
• productivity/developer vs productivity for a growing 

development department

fredag 14 juni 13



Evolution vs Design
• Evolution means adaption
• Having something to adapt to is good - it means you are 

successful
• Evolution leaves artifacts

• best case is that your appendix does nothing, but it 
might actually kill you

• Design carries more purpose and a sense of direction
• Adaptability might suffer
• You can’t design for every possible change

fredag 14 juni 13



Evolution and Adaption gives us..

fredag 14 juni 13



Zoom in..

fredag 14 juni 13



Problems..
• Dependencies way too complex
• Code base shared among too many developers - 

everybody “owns”, and changes, everything
• Development does not scale
• Testing mostly done at system level, not a unit level

• difficult to test parts in isolation
• turn around times are long

• Code smells
• Rigid culture of how development and testing is done

• difficult to change, both in terms of code and 
behaviour

fredag 14 juni 13



Technical Debt
• Technical Debt is like taking a loan when buying a house

• Instead of having everything upfront, you can get 
what you want sooner.

• You have to pay you mortgage
• Be careful about taking more loans if your income 

does not match
• Any product will carry technical debt

• Time to market over The Perfect Product
• Adaption to insights gained and new directions
• Not knowing where you are going from the start

fredag 14 juni 13



Solving Technical Debt is Trivial..

.. if you have a time machine ..
fredag 14 juni 13



The Turning Point
• Be open about your technical debt

• to yourself, the team, management
• if not, it is reasonable to assume that a solution has 

been made according to best practices
• Make it clear that some choices done for short term gain 

will increase the technical debt
• Change of directions will increase technical debt
• Increasing technical debt will slow you down
• Not decreasing technical debt will keep you slow

fredag 14 juni 13



Measure, don’t guess!
• Technical debt needs to be quantified
• Monitoring change shows if you are going in the right 

direction
• Know where to focus your efforts

• bad spots
• prepare for future change
• be pragmatic; don’t fix things that aren’t touched

fredag 14 juni 13



Observation Effects
• This is Heisenberg and Hawthorne in action
• Doing measurements will have effects on behaviour

• you want to look good according to the metrics
• doing good code reviews will increase quality

• Effects are not better than the measurements
• anything can be gamed
• trends are often more important than single values
• secondary, long term, effects show effectiveness, e.g, 

does increased code coverage actually result in better 
quality?

fredag 14 juni 13



Possible Metrics
• Quality
• Productivity
• Static code analysis

• dependencies
• access patterns
• type checking
• code smells

• Code coverage by unit tests

fredag 14 juni 13



Tools
Dependencies

• Define an additional module hierarchy
• applications are collections of module

• We measure bad call dependencies in our code
• Allow only certain modules (the API) in an application 

to be called from other applications
• Define layers in the system and define how layers are 

allowed to call each other
• Compute the call graph and find violations to the rules
• Works on beam code

fredag 14 juni 13



Tools
Dependencies

• Effects of measuring
• Prevent new bad dependencies
• Encourage active work on removing bad dependencies

• define and use APIs
• move and refactor code

fredag 14 juni 13



Tools
• Find invalid record access from other modules

• Using knowledge of actual representation is long term 
bad - you will change representation at some point

• Prevents easy representation change
• Measure code coverage to encourage writing unit tests

• currently measure coverage from eunit
• adjust rebar for more precise measurement

fredag 14 juni 13



Count of Bad Dependencies

Total
API violations
Layer violations

fredag 14 juni 13



Results
• Teams that actively work with increasing code coverage 

from unit tests have less incidents
• secondary effect of initial effort

• Bad dependencies are decreasing
• Sense of code ownership is increasing

• “sharing” ownership between teams is a bad idea
• Pride within teams are increasing

• produce at good quality

fredag 14 juni 13



Closing Remarks
• You will have technical debt - don’t pretend otherwise
• Control you technical debt - or it will control you
• Measure you technical debt - don’t guess
• Measurement will have effects
• Changing the culture is difficult and slow
• We are building a new architecture while running 24/7

• This poses it’s own set of challenges
• You “legacy” system will live longer than you expect 

and want
• The Second System Syndrome is real

fredag 14 juni 13


