—

-

ERICSSON

BRING UNICODez TO

cRLANG!

THe TALe OF THE PROGRAMMER, THE
clGHT BIT CHARACTER CAVE, THE GREEN

-leLDS OF UNICODeE AND THE
SBACKWARD COMPATI

PATRIK NYBLOM, ERICSS

pan@erlang.orqg

= D
S1L

RAGON OF

TY

ON AB

mailto:pan@erlang.org
mailto:pan@erlang.org

Once upon a time, in the WOwae?ﬁ[
[and qf fr[ang/O‘f P, there was a little
Pprogrammer who was tmja]oeof ina
cage called eigﬁt-ﬁit characters,
guanfecf Ey the migﬁty c[mgon
Backward Comyau’ﬁiﬁ’ty.

Outside of the cage were the
Monc[e@[ﬁefafs @C Unicode, where
everyone could send messages to

each other in any script. The
programmer wanted to go there, but”
the cfmgon was a]oroﬁﬂem...

Thursday, June 13, 13

UNICOD

= - WHAT IS 1T Ry

—ALLY?

» The Unicode standard defines code points for “all” known
living and dead scripts

»More or less, every symbol ever used in any language, plus
some other symbols, have a codepoint

» The code points are compatible with US-ASCII (7bit) and

|ISO-Latin-1

Unicode code

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 3

points

Thursday, June 13, 13

UNICODE - BUT THERE'S MORE

» There are also a couple of encodings available
-UTF-8
-UTF-16 (big and little endian)
-UTF-32 (big and little endian)
-UCS-4
»Encodings define mappings from code points to any byte
oriented media

Unicode codepoints UTF-8 Encoded

01111111

11010000 10000000

11100001 10001001 10100111

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 4

Thursday, June 13, 13

THe |

~ORGOTTEN ENCODING...

»When we only had ISO-Latin-1 or 7bit ASCII, we never
thought of encodings

»Each character could fit in one byte
»We can call that “byte-wise encoding”
» Byte-wise encoding had enormous advantages

—Compact
—All characters

had the same size

—Every character could be written to any device (except 8bit unclean

ones)

»Life was good, so good that we did not even reflect upon it

—But was it real

Unicode in Erlang | Public | © Ericsson AB

ly that good?

2013 | 2013-06-13 | Page 5

Thursday, June 13, 13

RUL

Il
O

- UNICODE #1

Do ot confuse Character Seks wikth
Encodings Do not confuse
Character Sets with Encodings Do

not confuse Character Seks with
Encodings Do not confuse
Character Sets with Encodings Do
not confuse Character Seks with

Encodings Do not c:omfuse\

i in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page

Thursday, June 13, 13

UTF-8 ENCODING

»A popular encoding, especially in western countries

»Backwards compatible with 7bit ASCII| characters byte-wise
encoded

»But NOT backwards compatible with Latin-1 characters
byte-wise encoded

Unicode code points,
UTF-8 encoded

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 7

Thursday, June 13, 13

REPRESENTATION IN ERLANG

»Unicode Strings are represented as lists of integers, one list
element per character, the integer being the code point

»When encoded in a binary (byte-oriented), the default
encoding in Erlang is UTF-8

—All Unicode aware modules that handle binaries, handle UTF-8
binaries.

—Some modules handle other encodings, for communicating with the
outside world

» If you mix lists of codepoints and UTF-8 binaries, you get
unicode:chardata(), a possibly deep list of integers
representing codepoints, and UTF-8 binaries.

—Thisis NOT an iolist ()
But a pure binary with any encoding is of course always valid in i/o
—Binaries with byte-wise encoded characters 128..255 are not allowed

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 8

Thursday, June 13, 13

UNICODe CONVERSION

yConversion between lists and binaries with a certain
encoding, is done with the module unicode

rcharacters to list(Data) -> list()

— Data = unicode:chardata()

ycharacters to list(Data,InEncoding) -> list()

— Data = latinl chardata() | chardata() |
external chardata()

latinl chardata() = 1olist()

external chardata() = as chardata(), but with
binaries 1in other encoding, defined by InEncoding

— InEncoding = latinl| unicode | utf8 | utflé |
{utflée, big | little} | utf32 |
{utf32, big | little}

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 9

Thursday, June 13, 13

UNICODe CONVERSION

yConversion between lists and binaries with a certain
encoding, is done with the module unicode

rcharacters to list(Data) -> list()
— Data = unicode:chardata()

ycharacters to list(Data,InEncoding) -> list()

— Data = latinl chardata() | chardata() |
external chardata()

latinl chardata() = 1olist()

external chardata() = as chardata(), but with

binaries 1in g — ling, defined by InEncoding
— InEncoding Y utfs | utfle |

Confusing! Rule #1..,

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 9

Thursday, June 13, 13

UNICODe CONVERSION

rcharacters to binary(Data) -> binary()

— Data = unicode:chardata()

rcharacters to binary(Data, InEncoding) ->
binary ()

rcharacters to binary(Data, InEncoding,
OutEncoding) ->
binary()

— Data = latinl chardata() | chardata() |
external chardata()

— InEncoding = latinl| unicode | utf8 | utflé |
{utfl6, big | little} | utf32 |
{utf32, big | little}

— OutEncoding = latinl| unicode | utf8 | utflé |

{utflée, big | little} | utf32 |
{utf32, big | little}

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 10

Thursday, June 13, 13

BIT-SYNTAX

»Matching an encoded character:
— <<X/utf8,_ /binary>> = Bin

» Constructing an encoded character
- <<Ch/utf16-little>>
»Syntactic sugar for literals

- <<*’0dv0o0evC” /utf8>>

— Same as <<$’0O/utf8, $0/utf8, $v/utf8, $O/utfs,
So/utf8, $&/utf8, $U/utf8, $c/utfg>>

»A string literal, or a character literal, can contain any “literal”
unicode character if the input device to the evaluator or the
compiler can represent it

» If the device is byte-wise, \x{HHH} can be used to write a
character > 255

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 11

Thursday, June 13, 13

UNICODE AND 1/0

> The 1o module is Unicode aware
—So are it’s friends (io_lib, io_lib_format etc)

» The £ile module handles bytes, not characters and is not
Unicode aware
—Except file:open/2, which can open files for the io module to handle

» The actual io_servers then? (like files, standard _io etc)
—Maybe, maybe not
—Depends on the ‘encoding’ option
1> i1o:getopts().
[... {encoding,unicode}]
» The ‘encoding’ tells you what is in the other end
—if encoding != ‘latin1’, you can send any (unicode) character to it
Perfect for io-module, less useful for £ile module
—If encoding == ‘latin1’, you can only send characters < 256 to it

.e. a plain byte oriented device, perfect for £ile module

Unicode in Erlang | Public | © Ericsson AB 2613 | 2013-06-13 | Page 12

Thursday, June 13, 13

R

—GARDLESS O

- ANY |

=ENCODING IN

THE I0_SERVER..

> The 1o module handles unicode:chardata()

»io:put chars/{1,2} orio:format/{2,3} does not
change parameter types depending on the encoding of the
io server (puh!)

»But you may not be able to output all characters if encoding

IS ‘la

tin1’...

» The file module handles bytes, so all data to e.qg.
file:write/2 willbe iolist () or binary()

»Mixing any other encoding than ‘latin1’ with £file:write/
file:read etc will get you into trouble

g | Public | © Ericsson AB 2013 | 2013-06-13 | Page 13

Thursday, June 13, 13

RULE OF UNICODE #2

Do not use the file module to read
and write files with other encoding
Ehan ‘Laktinl’! Do not use the file

module to read and write files with
other encoding than ‘latinl’! Do not
use the file module to read and

write files with other encoding
than ‘latinl’! Do not use Ehe\

|O:FORMAT AND UNICODE

» The £t modifier makes ~p and ~s handle Unicode

—~8 means Latin-1 characters in lists and byte-wise encoded characters
In binaries
—~t s means any Unicode characters in lists and UTF-8 binaries (but will

fallback to byte-wise encoded binaries if UTF-8 decoding fails)

—The upside of using io lib:format(“~s”,...) Isthatthe return
value is guaranteed to be an iolist()!

—~Pp takes any data and will try to display “string-data” as literal strings as
long as they're in the Latin-1 range and binaries are byte-wise encoded.

—~tp takes any data and will try to display “string-data” as literal strings
both for byte-wise and UTF-8 encoded binaries.

The “printable range” parameter to Erlang controls which characters
are considered printable:

-erl +pc latinl - Only Latin-1 characters
-erl +pc unicode - Any printable Unicode character

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 15

Thursday, June 13, 13

|O:FORMAT e XAMPLE

$ erl +pc latinl

1> io:format("~p~n",[{<<"Akerspdke">>,
<<"Akerspdke"/utfg>>,
<<"OAY22EY2Z"/utf8>>}]).

{<<"Akerspdke">>,

<<195,133,107,101,114,115,112,195,182,107,101>>,
<<225,189,136,206,148,206,165,206,163,
206,163,206,149,206,142,206,163>>}

ok

2> io:format("~tp~n", [{<<"Akerspdke">>,
<<"Akerspoke" /utf8>>,

<<"OAY22E'Y2" /utf8>>}]).

{<<"Akerspdke">>,<<"Akerspoke" /utf8>>,
<<225,189,136,206,148,206,165,206,163,
206,163,206,149,206,142,206,163>>}

ok

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 16

Thursday, June 13, 13

|O:FORMAT e XAMPLE

S erl +pc unicode

1> io:format("~tp~n", [{<<"Akerspdke">>,
<<"Akerspodke" /utf8>>,

<<"OAY2ZZE'YZ"/utf8>>}]).

{<<"Akerspdke">>,<<"Akerspoke" /utf8>>,<<"OAYIZIEYX"/utf8>>}

ok

2> io:format("~tp~n", [{<<"Akerspdke">>,
<<"Akerspdke"/utf8>>,
lists:seq(2710,2720)}]).

{<<"Akerspdke">>,<<"Akerspoke" /utf8>>, "WIALIULIHAN25" }
ok

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 17

Thursday, June 13, 13

|O:FORMAT e XAMPLE

S erl +pc unicode

1> io:format("~tp~n", [{<<"Akerspdke">>,
<<"Akerspodke" /utf8>>,

<<"OAY2ZZE'YZ"/utf8>>}]).

{<<"Akerspdke">>,<<"Akerspoke"/utf8>>,<<"OAYIXEYXI"/utf8>>}

ok

2> io:format("~tp~n",[{<<"Akerspdke">>,
<<"Akerspdke"/utf8>>,
lists:seq(2710,

{<<"Akerspdke">>,<<"Akerspdke"/utf8

ok

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 17

Thursday, June 13, 13

THE SHeLL

» The shell will handle Unicode characters > 255 if..
—Your terminal handles UTF-8 (or you run werl) and..
Your LANG or LC CTYPE environment indicates UTF-8 and...

You use “new shell”

—You specifically do
1> io:setopts([{encoding,utf8}])

Which will make any standard _io server output and input data in
UTF-8 (regardless of —oldshell or -noshell)

» Check with
1> 1o0:getopts()

»Read Stdlib Users Guide: Using Unicode In Erlang for
troubleshooting tips!

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 18

Thursday, June 13, 13

-ILE NAMES

»File names in the full Unicode range comes in at least two
flavours:

» Transparent file naming

—Encoding of file names is by convention (usually UTF-8)

—The convention can not be safely assumed from LANG, LC_CTYPE or
anything else

—Linux behaves like this
»Mandatory Unicode file names

—Some encoding is enforced

—Different solutions on Windows and Mac, but the Erlang programmer
should not need to know...

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 19

Thursday, June 13, 13

S0...

»>When in doubt, Erlang regards all file names to be byte-wise
encoded

»Erlang is in doubt when the OS uses transparent file naming

»On Mac and Windows, all file names are considered to be in
Unicode
—But on Mac Erlang also have to handle the graphemes...

» The brave can turn on Unicode file names on any platform:

—erl +fnu
—erl +fnuw

» The semi-brave can determine file name encoding from the
environment

—erl +fna

—erl +fnai

»+£fn{l|a|lw} also affects environment variables, parameters and
open port ({spawn_executable, ...}, ...)

Umcod Erlang 13 06-13 |=Rage 2

Thursday, June 13, 13

WHAT ABOUT MY SOURCE FILES?

» The Erlang source code can be in one of two encodings:
-UTF-8
—Byte-wise (latin1)
»UTF-8 encoded source does not mean that the language
accepts the full Unicode character set everywhere...

»...but you can write string literals in the full Unicode range if
your source is UTF-8 encoded

»Encoding is selected on one of the two first lines in the file
with a comment matching:

“coding\s*[:=]\s*([-a-2zA-Z0-9])+"

» Examples:

coding: UTF-8

I've settled for encoding = Latin-1

I
o® o0 o©
o® o0 o©

With coding: Latin-1 I mean byte-wise

Thursday, June 13, 13

THE LITERALS...

»S0, you have UTF-8 encoded source files...
»"oxfB" works perfect
y<<"axf" /ut£8>> also works perfect

y<<"of">> is horror!
—The bytes get truncated to eight bits (as always in bit syntax)!

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 22

Thursday, June 13, 13

THE LITERALS...

»S0, you have UTF-8 encoded source files...
»"oxfB" works perfect
y<<"axf" /ut£8>> also works perfect

y<<"of">> is horror!
-The b get truncated to eight bits (as always in bit syntax)!

With byte-wise
encoding, this would
have creakted an UTF-¥%
bmarj bfj accidenk,

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 22

Thursday, June 13, 13

THE LITERALS...

»S0, you have UTF-8 encoded source files...
»"oxfB" works perfect
y<<"axf" /ut£8>> also works perfect

y<<"of">> is horror!
-The b get truncated to eight bits (as always in bit syntax)!

With byte-wise
encoding, this would
have creakted an UTF-¥%
bmarj bfj accidenk,

Do not ever, ever
utilise that.

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 22

Thursday, June 13, 13

THE LITERALS...

»S0, you have UTF-8 encoded source files...
»"oxfB" works perfect
y<<"axf" /ut£8>> also works perfect

y<<"of">> is horror!
-The b get truncated to eight bits (as always in bit syntax)!

With byte-wise
encoding, this would
have creakted an UTF-¥%
bmarj bfj accidenk,

Do not ever, ever
ukilise Ehat. Ever!

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 22

Thursday, June 13, 13

WHAT'S NOT THERE

»Erlang does not handle graphemes that consist of more
than one Unicode code point, except in handling file names
on Mac

»Erlang also has no notion of language, why to _upper and
to lower is not implemented

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 23

Thursday, June 13, 13

—

-

ERICSSON

WHAT'S NOT THERE

»Erlang does not handle graphemes that consist of more
than one Unicode code point, except in handling file names
on Mac

rlang also has no notion of language, why to_Upper amm™—y
amlower is not implemented e

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 23

Thursday, June 13, 13

—

-

ERICSSON

WHAT'S NOT THERE

»Erlang does not handle graphemes that consist of more
than one Unicode code point, except in handling file names
on Mac

rlang also has no notion of language, why to_Upper amm™—y
amlawer is not implemented e

- - -) i > ”””

Open source proje«t&s ko >
the rescue: WOL&4

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 23

Thursday, June 13, 13

—

-

ERICSSON

WHAT'S NOT THERE

»Erlang does not handle graphemes that consist of more
than one Unicode code point, except in handling file names
on Mac

rlang also has no notion of language, why to_Upper amm™—y
amlower is not implemented e

Open source Frqjea&s ko >
the rescue: WOL&4

i18n - a mapping to C libraries for
localization by Michael Uvarov

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 23

Thursday, June 13, 13

—

-

ERICSSON

WHAT'S NOT THERE

»Erlang does not handle graphemes that consist of more
than one Unicode code point, except in handling file names
on Mac

amiQuer is not implemented

— __ , -

Open source Frojea&s ko >
the rescue: WG\E,-

i18n - a mapping to C libraries for
localization by Michael Uvarov

Elixir - language independent upcase
and downcase in module String

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 23

Thursday, June 13, 13

UPCASE AND LOWCASE..

1>'Elixir.String' :downcase (<<"OAY22EYXZ"/utf8>>).
<<"0dvooevo" /utf8>>

2>118n string:to utf8(
118n string:to lower(
i18n string:from utf8(<<"OAYZ2ZEYXZ"/utfg8>>))).

<<"0dvoCeVC" /utf8>>
3>118n string:to utf8(
118n string:to lower(
118n string:to upper (
i18n string:from utf8(<<"MaBen"/utf8>>)))).
<<"massen'">>
4> 118n string:to utf8(
118n string:to lower
118n string:to upper (
i18n string:from utf8(<<"gcalistigi"/utf8>>)))).
<<"galistigi"/utf8>>
5> i118n string:to utf8(
118n string:to lower('tr TR',
118n string:to upper (
i18n string:from utf8(<<"galistigi"/utf8>>)))).
<<"galistigi"/utf8>>

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 24

Thursday, June 13, 13

UPCASE AND LOWCASE..

1>'Elixir.String' :downcase (<<"OAY22EYXZ"/utf8>>).
<<"0dv0ooeVT" /utfg>>
2>118n string:to utf8(| |
il18n string:to lower(Language.
i18n string:from utf8(<<"OAYZ2ZEYXZ"/utfg8>>))).

<<"0dvoCeVC" /utf8>>
3>118n string:to utf8(
118n string:to lower(
118n string:to upper (
i18n string:from utf8(<<"MaBen"/utf8>>)))).

&COT’TQC&, when we have no notion o{

<<"massen'">>
4> 118n string:to utf8(
118n string:to lower
118n string:to upper (
i18n string:from utf8(<<"gcalistigi"/utf8>>)))).
<<"galistigi"/utf8>>
5> i118n string:to utf8(
118n string:to lower('tr TR',
118n string:to upper (
i18n string:from utf8(<<"galistigi"/utf8>>)))).
<<"galistigi"/utf8>>

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 24

Thursday, June 13, 13

UPCASE AND LOWCASE..

1>'Elixir.String' :downcase (<<"OAY22EYXZ"/utf8>>).
<<"0dv0ooeVT" /utfg>>
2>118n string:to utf8(| |
il18n string:to lower(Language.
i18n string:from utf8(<<"OAYZ2ZEYXZ"/utfg8>>))).

<<"OdUOOUELC" /utf8>> @M Correct, when we have a notion of
3>118n string:to utf8(

|]
118n string:to lower(LQMS”'O‘SQ’
118n string:to upper (
i18n string:from utf8(<<"MaBen"/utf8>>)))).

KCOW@.@:& when we have no notion o{

<<"massen'">>
4> 118n string:to utf8(
118n string:to lower
118n string:to upper (
i18n string:from utf8(<<"gcalistigi"/utf8>>)))).
<<"galistigi"/utf8>>
5> i118n string:to utf8(
118n string:to lower('tr TR',
118n string:to upper (
i18n string:from utf8(<<"galistigi"/utf8>>)))).
<<"galistigi"/utf8>>

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 24

Thursday, June 13, 13

UPCASE AND LOWCASE..

1>'Elixir.String' :downcase (<<"OAY22EYXZ"/utf8>>).
<<"0dv0ooeVT" /utfg>>
2>118n string:to utf8(| |
il18n string:to lower(Language.
i18n string:from utf8(<<"OAYZ2ZEYXZ"/utfg8>>))).

<<"00UCOELC" /utf8>> {*ML.OWQ{:& when we have a notion of
3>118n string:to utf8(

118n string:to lower(LO‘MSM'O‘SQ’
118n string:to upper (
i18n_string:from_utf8(<<"MaBen"/utf8>>)))).

KCOW@.@:& when we have no notion o{

<<"massen'">> e m———
4> i118n string: to utf8(
118n string:to lower
118n string:to upper (
i18n string:from utf8(<<"gcalistigi"/utf8>>)))).
<<"calistigi"/utf8>>
5> i118n string:to utf8(
118n string:to lower('tr TR',
118n string:to upper (
i18n string:from utf8(<<"galistigi"/utf8>>)))).
<<"galistigi"/utf8>>

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 24

= HO PQLQSS we

Thursday, June 13, 13

UPCASE AND LOWCASE..

1>'Elixir.String' :downcase (<<"OAY22EYXZ"/utf8>>).
<<"0dv0ooeVT" /utfg>>
2>118n string:to utf8(| |
il18n string:to lower(Language.
i18n string:from utf8(<<"OAYZ2ZEYXZ"/utfg8>>))).

<<"00UCOELC" /utf8>> {*ML.OWQ{:& when we have a notion of
3>118n string:to utf8(

118n string:to lower(LO‘MSM'O‘SQ’
118n string:to upper (
i18n_string:from_utf8(<<"MaBen"/utf8>>)))).

KCOW@.@:& when we have no notion o{

<<"massen'">> e m———
4> i118n string: to utf8(
118n string:to lower
118n string:to upper (
i18n string:from utf8(<<"gcalistigi"/utf8>>)))).
<<"galigtigi"/utf8>> ﬁ;
5> il8n string:to utf8(
118n string:to lower('tr TR',
118n string:to upper (
i18n string:from utf8(<<"galistigi"/utf8>>)))).
<<"galistigi"/utf8>>

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 24

= HO PQLQSS we

- Wrohg language

Thursday, June 13, 13

UPCASE AND LOWCASE..

1>'Elixir.String' :downcase (<<"OAY22EYXZ"/utf8>>).
<<"0dv0ooeVT" /utfg>>
2>118n string:to utf8(| |
il18n string:to lower(Language.
i18n string:from utf8(<<"OAYZ2ZEYXZ"/utfg8>>))).

<<"00UCOELC" /utf8>> «‘MLC)T’T’&CE when we have a notion of
3>118n string:to utf8(

118n string:to lower(LO‘MSM'O‘SQ’
118n string:to upper (
i18n_string:from_utf8(<<"MaBen"/utf8>>)))).

KCOVT’QC&, when we have no notion o{

<<"massen'">> A
4> i118n string: to utf8(
118n string:to lower
118n string:to upper (
i18n string:from utf8(<<"gcalistigi"/utf8>>)))).
<<"galigtigi"/utf8>> ﬁ;
5> il8n string:to utf8(
118n string:to lower('tr TR',
118n string:to upper (
i18n string:from utf8(<<"galistigi"/utf8>>)))).

<<"caligtigi"/utfg>> %Carrea&, we have the right locale!

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 24

= HO PQLQSS we

- Wrohg language

Thursday, June 13, 13

SUMMARY OF SETTINGS

»LANG and LC_CTYPE affects your shell and standard io/
standard error - should reflect your actual terminals
capabillities

»+pc {unicode | latinl} affects what letters (code points)

you want Erlang heuristics to determine as printable (~p
etc)

»+£fn{l|alu} [{w|i|e}] tells Erlang how to interpret file names
and what to do if decoding fails - should reflect the file
system you are running on

repp:default encoding/O0 tells you what the default
source code encoding Is

»io:setopts/{1,2}, —oldshell, -noshell sets the
accepted character set and encoding of an io_server

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 25

Thursday, June 13, 13

rUTURE WORK

»Unicode file naming default (at least +£na)
»More options (ranges) to +pc

»UTF-8 default for source code

»Support for installation in Unicode path
»open_port({spawn, ...}, ...) to handle Unicode

»upcase/lowcase
—locale support?
—Simpler approach?
—Fix dirty scheduling and integrate i18n?

»Atoms in Unicode

»Variables in Unicode (?)

»String library extended/rewritten
»Simpler literal syntax for UTF-8 binaries?

Unicode in Erlang | Public | © Ericsson AB 2013 | 2013-06-13 | Page 26

Thursday, June 13, 13

ERICSSON

