
Parallel Erlang - Speed beyond Concurrency
Experience from Parallelizing Dialyzer

Stavros Aronis

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 1/33

Dialyzer

Static analysis tool included in Erlang/OTP

30,000 lines of Erlang code

$ dialyzer --build_plt --apps erts kernel stdlib

Compiling some key modules to native code... done in 0m12.27s

Creating PLT /home/stavros/.dialyzer_plt ...

Unknown functions:

...

Unknown types:

...

done in 0m26.42s

done (passed successfully)

$ dialyzer my_module.beam

Checking whether the PLT is up-to-date... yes

Proceeding with analysis... done in 0m0.38s

done (passed successfully)

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 2/33

Obligatory preaching!

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 3/33

Preaching!

[...] the real value of static analysis for correctness issues is
its ability to find problems early and cheaply, rather than
in finding subtle but serious problems that cannot be found
by other quality assurance methods.

- The Google FindBugs Fixit, Nathaniel Ayewah and William Pugh, 2010

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 4/33

Preaching!

The main targets this Makefile supports are as follows:
...
dialyzer: Build the dependency PLT and run dialyzer on the project

- Universal Makefile for Erlang Projects That Use Rebar, 4 Jun 2013

“You MUST ensure that all commits pass all tests and do not have extra Dialyzer
warnings.”

- Cowboy’s CONTRIBUTING.md, Loic Hoguin

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 5/33

Preaching!

Dialyzer is never wrong.

- Fact

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 6/33

But...

... a tool is useful if you use it often

... you should use Dialyzer at least before you commit

... it should be easy and fast

... on modern, multicore machines

Let’s make it parallel!

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 7/33

Internals of Dialyzer

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 8/33

Internals of Dialyzer

Original developers: Tobias Lindahl & Kostis Sagonas

Type inference: A signature (spec) is inferred for each function

e.g. fun(atom(), [_]) -> 42 | ’ok’ | {_,_}.

Two phases:

bottom-up analysis: from callees to callers (typesig)
Find all the acceptable arguments and possible results
top-down analysis: from callers to callees (refine)
Refine types, using dataflow (for the non-exported functions)

Repeatedly, until fixpoint.

Final pass: use types to report discrepancies.

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 9/33

Example

1 -module(example).

2

3 -export([format/2]).

4

5 format(Arg1, Arg2) ->

6 case valid(Arg1) of

7 true ->

8 format_arg(valid, Arg2);

9 false ->

10 throw(invalid);

11 undefined ->

12 throw(unknown)

13 end.

14

15 valid(Arg) when is_atom(Arg) -> true;

16 valid(_) -> false.

17

18 format_arg(Tag, Arg) -> {Tag, Arg}.

Callgraph:

format/2

valid/1

format arg/2

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 10/33

Closer to reality – SCCs

[{l ists ,max,1}]

[{lists ,max,2}]

[{l is ts ,merge,1}]

[{lists ,mergel ,2},{lists ,rmergel ,2}]

[{l is ts ,merge,2}]

[{l is ts ,merge2_2,5},{l is ts ,merge2_1,4}]

[{l is ts ,merge3,3}]

[{l is ts ,merge3_12_3,6},

 { l is ts ,merge3_21_3,6},

 { l i s t s ,merge3_21,7},

 { l is ts ,merge3_2,6},

 { l i s t s ,merge3_12,7},

 {l is ts ,merge3_1,6}]

[{l is ts , rmerge2_2,5},{l is ts , rmerge2_1,4}]

[{l is ts , rmerge3_21_3,6},

 { l is ts , rmerge3_12_3,6},

 { l i s ts , rmerge3_12,7},

 { l is ts , rmerge3_2,6},

 { l i s ts , rmerge3_21,7},

 {l is ts , rmerge3_1,6}]

[{lists,min,1}]

[{lists,min,2}]

[{l is ts , rmerge,2}]

[{l is ts , rmerge3,3}]

[{lists ,sort ,1}]

[{lists ,sort_1,3}]

[{lists,split_1_1,6},{lists,split_1,5}] [{lists,split_2_1,6},{lists,split_2,5}]

(Highlighted functions are exported)

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 11/33

Performance of sequential version

1 $ dialyzer --statistics <all apps in OTP>:

2

3 compile : 114.67s (1493 modules)

4 prepare : 4.83s

5 order : 11.16s

6 typesig 1 : 1408.07s (97347 SCCs)

7 order : 9.93s

8 refine 1 : 240.22s (1493 modules)

9 order : 15.14s

10 typesig 2 : 2443.59s (80323 SCCs)

11 order : 6.35s

12 refine 2 : 247.81s (1414 modules)

13 order : 0.28s

14 typesig 3 : 95.45s (2429 SCCs)

15 order : 0.12s

16 refine 3 : 28.99s (203 modules)

17 [round 4 & 5] : < 0.50s

18 warning : 308.26s (1493 modules)

19

20 done in 82m29.87s

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 12/33

Spawn, spawn, spawn...

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 13/33

Distributing the work

The tasks for a “worker” are obvious:

Prepare the code of a module

Perform type analysis of an SCC

Perform refinement of the functions in a module

Scan a module for discrepancies

Workers should, however, respect the dependencies.

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 14/33

Coordination

[{l ists ,max,1}]

[{lists ,max,2}]

[{l is ts ,merge,1}]

[{lists ,mergel ,2},{lists ,rmergel ,2}]

[{l is ts ,merge,2}]

[{l is ts ,merge2_2,5},{l is ts ,merge2_1,4}]

[{l is ts ,merge3,3}]

[{l is ts ,merge3_12_3,6},

 { l is ts ,merge3_21_3,6},

 { l i s t s ,merge3_21,7},

 { l is ts ,merge3_2,6},

 { l i s t s ,merge3_12,7},

 {l is ts ,merge3_1,6}]

[{l is ts , rmerge2_2,5},{l is ts , rmerge2_1,4}]

[{l is ts , rmerge3_21_3,6},

 { l is ts , rmerge3_12_3,6},

 { l i s ts , rmerge3_12,7},

 { l is ts , rmerge3_2,6},

 { l i s ts , rmerge3_21,7},

 {l is ts , rmerge3_1,6}]

[{lists,min,1}]

[{lists,min,2}]

[{l is ts , rmerge,2}]

[{l is ts , rmerge3,3}]

[{lists ,sort ,1}]

[{lists ,sort_1,3}]

[{lists,split_1_1,6},{lists,split_1,5}] [{lists,split_2_1,6},{lists,split_2,5}]

(Highlighted SCCs are leaves of the callgraph)

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 15/33

Coordination

[{l ists ,max,1}]

[{lists ,max,2}]

[{l is ts ,merge,1}]

[{lists ,mergel ,2},{lists ,rmergel ,2}]

[{l is ts ,merge,2}]

[{l is ts ,merge2_2,5},{l is ts ,merge2_1,4}]

[{l is ts ,merge3,3}]

[{l is ts ,merge3_12_3,6},

 { l is ts ,merge3_21_3,6},

 { l i s t s ,merge3_21,7},

 { l is ts ,merge3_2,6},

 { l i s t s ,merge3_12,7},

 {l is ts ,merge3_1,6}]

[{l is ts , rmerge2_2,5},{l is ts , rmerge2_1,4}]

[{l is ts , rmerge3_21_3,6},

 { l is ts , rmerge3_12_3,6},

 { l i s ts , rmerge3_12,7},

 { l is ts , rmerge3_2,6},

 { l i s ts , rmerge3_21,7},

 {l is ts , rmerge3_1,6}]

[{lists,min,1}]

[{lists,min,2}]

[{l is ts , rmerge,2}]

[{l is ts , rmerge3,3}]

[{lists ,sort ,1}]

[{lists ,sort_1,3}]

[{lists,split_1_1,6},{lists,split_1,5}] [{lists,split_2_1,6},{lists,split_2,5}]

(After some have been analysed.)

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 16/33

Decision #1: Coordination

Central “coordinator”?

Keep track of dependencies
Spawn workers when dependencies are satisfied
Bottleneck

Spawn, spawn, spawn!

Distributed coordination:

Calculate and make available all dependencies in a public ETS table
Spawn all workers (erl +P 1.000.000 !)
Each waits for a message from each dependency before it starts running
Some of them may be done before we finish spawning...
(It’s ok, sleep for a while)

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 17/33

Decision #2: Data sharing

Data serving processes?

Linearization
Replication / Distribution → Too complex

Use more public ETS tables instead!

Prepared code, dependencies, types are all in ETS

Even for data from dependent processes?

Broadcast a type to n workers → Sequential
Just write it in ETS (with write concurrency)
Everyone that needs it will read it (concurrently)

We are ready to go!

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 18/33

Sequential version

Suppose we just wanted to analyze leaf SCCs:

1 sequential_analysis(SCCs, State) ->

2 FoldFun = fun (SCC, Acc) -> find_type(SCC, Acc, State) end,

3 Results = lists:foldl(FoldFun, [], SCCs),

4 NewState = update_types(Results, State),

5 ...

6

7 find_type(SCC, Acc, State) ->

8 Code = retrieve_code(SCC, State),

9 Type = analyze_code(Code, State),

10 [{SCC, Type}|Acc].

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 19/33

Parallel version

1 parallel_analysis(SCCs, State) ->

2 ParentPID = self(),

3 FoldFun = fun (SCC, Counter) ->

4 spawn(fun () -> find_type(SCC, ParentPID, State) end),

5 Counter + 1

6 end,

7 Workers = lists:foldl(FoldFun, 0, SCCs),

8 Results = receive_results(Workers, []),

9 NewState = update_types(Results, State),

10 ...

11

12 find_type(SCC, ParentPID, State) ->

13 Code = retrieve_code(SCC, State),

14 Type = analyze_code(Code, State),

15 ParentPID ! {SCC, Type}.

16

17 receive_results(0, Acc) -> Acc;

18 receive_results(N, Acc) ->

19 receive Result -> receive_result(N-1, [Result|Acc]) end.

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 20/33

Idle workers

[{l ists ,max,1}]

[{lists ,max,2}]

[{l is ts ,merge,1}]

[{lists ,mergel ,2},{lists ,rmergel ,2}]

[{l is ts ,merge,2}]

[{l is ts ,merge2_2,5},{l is ts ,merge2_1,4}]

[{l is ts ,merge3,3}]

[{l is ts ,merge3_12_3,6},

 { l is ts ,merge3_21_3,6},

 { l i s t s ,merge3_21,7},

 { l is ts ,merge3_2,6},

 { l i s t s ,merge3_12,7},

 {l is ts ,merge3_1,6}]

[{l is ts , rmerge2_2,5},{l is ts , rmerge2_1,4}]

[{l is ts , rmerge3_21_3,6},

 { l is ts , rmerge3_12_3,6},

 { l i s ts , rmerge3_12,7},

 { l is ts , rmerge3_2,6},

 { l i s ts , rmerge3_21,7},

 {l is ts , rmerge3_1,6}]

[{lists,min,1}]

[{lists,min,2}]

[{l is ts , rmerge,2}]

[{l is ts , rmerge3,3}]

[{lists ,sort ,1}]

[{lists ,sort_1,3}]

[{lists,split_1_1,6},{lists,split_1,5}] [{lists,split_2_1,6},{lists,split_2,5}]

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 21/33

Decision #3: Idle processes

All workers are spawned right from the start

Let them do preliminary tasks while waiting?

1 find_type(SCC, ParentPID, State) ->

2 Code = retrieve_code(SCC, State),

3 Type = analyze_code(Code, State),

4 ParentPID ! {SCC, Type}.

Out of memory!

Idle workers must not do anything until ready to run, in order to keep
their heaps’ size minimal

State must contain the bare essentials.

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 22/33

Decision #4: Throttling

When all dependencies have been satisfied let a worker run?

Out of memory!

Erlang scheduling is preemptive

Too many workers active → Too many half-finished jobs

Allow only as many active workers as logical cores

Erlang schedulers are efficient (≈100% CPU utilization when there
are many ready workers)

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 23/33

Decision #5: Granularity

Does our parallel version perform well with any input?

Workers for big SCCs need more time!

Split big SCCs into more workers...

... taking care of what is copied, of course!

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 24/33

Big SCCs

[{l ists ,max,1}]

[{lists ,max,2}]

[{l is ts ,merge,1}]

[{lists ,mergel ,2},{lists ,rmergel ,2}]

[{l is ts ,merge,2}]

[{l is ts ,merge2_2,5},{l is ts ,merge2_1,4}]

[{l is ts ,merge3,3}]

[{l is ts ,merge3_12_3,6},

 { l is ts ,merge3_21_3,6},

 { l i s t s ,merge3_21,7},

 { l is ts ,merge3_2,6},

 { l i s t s ,merge3_12,7},

 {l is ts ,merge3_1,6}]

[{l is ts , rmerge2_2,5},{l is ts , rmerge2_1,4}]

[{l is ts , rmerge3_21_3,6},

 { l is ts , rmerge3_12_3,6},

 { l i s ts , rmerge3_12,7},

 { l is ts , rmerge3_2,6},

 { l i s ts , rmerge3_21,7},

 {l is ts , rmerge3_1,6}]

[{lists,min,1}]

[{lists,min,2}]

[{l is ts , rmerge,2}]

[{l is ts , rmerge3,3}]

[{lists ,sort ,1}]

[{lists ,sort_1,3}]

[{lists,split_1_1,6},{lists,split_1,5}] [{lists,split_2_1,6},{lists,split_2,5}]

(Highlighted SCCs are “big”)

(The erl parse module has much bigger...)

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 25/33

Decision #6: Sequential leftovers

Initially we have a big callgraph with every function as a node

Filter out functions that have reached fixpoint
(digraph utils:reaching/2)
Graph condensation into SCCs (digraph utils:condensation/1)

Expensive!

Home made optimized version of the condensation algorithm

The digraph utils library is not really parallel...

Reachability is ok for the time being

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 26/33

Was it easy?

Already existing good structure

Significant level of familiarity

From 30,000 lines of Erlang code...

1,800 lines added, 1,000 lines deleted!

10% of the existing code affected

... mostly for the conversion of dictionary data structures to ETS
tables

Was it worth it?

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 27/33

Analyzing Erlang/OTP (AMD Bulldozer)

Phase 1 core 32 core Speedup

compile 114.67s 23.41s 4.9x
prepare 4.83s 5.59s -
order 11.16s 11.47s -
types1 1408.07s 78.61s 17.9x
order 9.93s 8.86s -
refine1 240.22s 22.39s 10.7x
order 15.14s 15.23s -
types2 2443.59s 110.74s 22.0x
order 6.35s 5.81s -
refine2 247.81s 21.09s 11.7x
order 0.28s 0.27s -
types3 95.45s 15.38s 6.2x
order 0.12s 0.11s -
refine3 28.99s 3.15s 9.2x
round 4 & 5 <0.50s <0.50s -
warning 308.26s 23.58s 13.0x

Total 82m29.87s 6m0.80s 13.7x

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 28/33

Analyzing Erlang/OTP (AMD Bulldozer)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 4 8 12 16 20 24 28 32

S
p

e
e
d
u
p

Schedulers

compile
find_types1

refine_types1

find_types2
refine_types2

find_types3

refine_types3
warning

total

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 29/33

Analyzing Erlang/OTP (i7)

 1

 2

 3

 4

 1 2 3 4 5 6 7 8

S
p

e
e
d
u
p

Schedulers

compile
find_types1

refine_types1

find_types2
refine_types2

find_types3

refine_types3
warning

total

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 30/33

... the tides of time

Published in Trends in Functional Programming 2012 symposium
(June 2012)

Refreshed results (June 2013, R16B) on AMD Bulldozer:

1 scheduler: 24m25s (was 82 minutes)

Special thanks to Hans Bolinder (OTP) for typesig optimizations!

32 schedulers: ???

16 schedulers: ???

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 31/33

Conclusion

Parallel Dialyzer is already part of Erlang/OTP (R15B03)

Also, one of RELEASE’s benchmarks
http://www.release-project.eu

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 32/33

http://www.release-project.eu

Thank you!

Stavros Aronis Parallel Erlang - Speed beyond Concurrency 33/33

