

Tailflow An OpenFlow Controller Framework

Torbjörn Törnkvist 22 March 2013

Tail-f Systems

- Founded 2005
 - HQ in Stockholm Sweden, with US sales
- Software Products:
 - ConfD On-device Management Agent
 - NCS Network Control System
- Customers, + 75 world-wide including:

What you'll hopefully will learn:

- SDN what does it mean?
- Openflow what is it?
- Modern Network Management the Tail-f way
- Service Chaining a realistic use case

Network management (according to Wikipedia)

Software Defined Networking (SDN)

- An approach to building computer networks that separates and abstracts elements of these systems.
- This makes it possible to apply modern software engineering techniques and practices.

- Reduces time to deployment
- Reduces costs!

Tail-f products: NCS and ConfD

NCS can control and configure a heterogenus set of network elements.

- Models
- Datastructures
- Mapping logic
- Auto rendered
 interfaces
- Transactions

ConfD may run on the managed devices to provide CLI, NETCONF, SNMP... access.

Openflow - what it is.

Traditional network element (according to my imagination) (e.g a *switch/router/firewall*)

Openflow capable switch

Openflow - the essence of it

- When a packet enters the HW, it looks into its flow table, to see what to do with it.
- Packet header values are matched against the flow table entries.
- A matching entry renders corresponding **actions** to be applied to the packet.

Openflow - matching

 If no matching entry is found in the flow table, then send the packet to the controller (SW) for some decision making.

Ingress port	Ether source	Ether dest.		IP source	IP dest.		TCP/ UDP port
-----------------	-----------------	----------------	--	--------------	-------------	--	---------------------

flow table entry

- The SW tells the HW what to do now (and in the future by inserting a flow entry into the flow table of the HW).
- Coupled to a flow entry is a set of **actions**.
- Example of some actions:
 - Send out packet on <port>
 - Rewrite the *<ether source>* to some other address
 - Drop the packet (i.e no actions)

Openflow device management

All kind of devices need to be managed

SDN vs Openflow

Openflow is a component of SDN

Software Defined Networking (SDN)

- It's not really about programming the network.
- It's about programming network services!

Part2: How to write an OF application?

How can/should the SW be structured?

What about management?

The role of the controller

- From the Openflow controller point of view; an Openflow switch generates a number of events, for example:
 - *datapath-join* when a switch connect to the controller
 - *packet-in* when a packet is delivered from a switch
 - flow-removed a flow (rule) was removed (e.g because of an expired timeout)

For each event we want to apply some logic!

Sources of inspiration

- Functional programming (of course...)
- The micro-protocol idea (what?)

By partition complex protocols into simple micro protocols, each of which is implemented by a protocol layer. Protocol layers can be stacked on top of each other in a variety of ways.

Each layer encapsulates some minimal amount of logic in order to make it composable and easy to understand.

Somewhat more micro...

A stack of **flowlets**, forming a *virtual-L2-networks* application.

Tailflow key components

• Flowlet ::= Erlang module + Yang module

- The configuration is described by Yang
- Erlang modules are ordered in execution stacks
- An Erlang module can return either of:
 - {break, LocalState}
 - {continue, LocalState, EventState}
 - {jump, LocalState, EventState, NewStack}

• Switch-logic ::= Flowlet configs + Flowlet stacks

- Forms the complete software controlling the switch.
- Can be applied to a particular switch (*datapath_id*)
- Or to any switch

The Tailflow system

Openflow usage - a realistic scenario

- Based on SrcNet, Vlan, etc... we want to thread packets through a chain of 'bump-inthe-wire devices.
- Each device implements some kind of service, e.g firewall, wlan-accelerator, deep packet inspector, etc...
- This is hard to do today with e.g policy routing, but easy with Openflow.

SDN Use Case: Service Chaining

Our demo setup:

DEMO TIME!

Demo created by:

- Torbjörn Törnkvist (Tail-f)
- Claes Wikström (Tail-f)
- Luke Gorrie (snabb.co)
- Niklas Bystedt (Dataduktus)

Thank you for listening!

Questions?