
Finding Concurrency Errors using
Concuerror

Kostis Sagonas

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Outline
Context of this work & Motivation
Concuerror: Systematic testing tool for Erlang

High-level description
Demo
Implementation technology
Blocking avoidance & Preemption bounding
More demos
Evaluation & Experience

Related testing tools
Concluding remarks

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Erlang
Concurrent functional programming language
Implements the actor model of concurrency

lightweight processes (“green threads”)
communicating via asynchronous message passing
selective receive
conceptually no shared memory between processes

Erlang’s implementation
built-ins that manipulate shared memory

e.g. process registry, ETS tables, etc.

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Motivation

Program

Test Test Result

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Motivation

Concurrent Program

Test Test Result?

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Concurrent programming is HARD
Concurrent execution is difficult to reason about
and get right (even for experts!)
Rare process interleaving results in bugs that are

hard to anticipate
difficult to find, reproduce, and debug (“Heisenbugs”)

hard to be sure whether they are really fixed
Big productivity problem: it can waste significant
developers’ time and resources
This work focuses on systematic testing

aka stateless model checking

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Comparison of approaches

Model
Checking

Static
Analysis

Systematic
Testing

Scalability + ++ ++

Precision + + ++

Coverage ++ ++ +

Generality ++ + ++

[Taken from CHESS tutorial]

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

-module(ping_pong).
-export([pong/0]).

pong() ->
Self = self(),
Pid = spawn(fun() -> ping(Self) end),
register(?MODULE, Pid),
receive ping -> ok end.

ping(P) ->
P ! ping.

-module(ping_pong_test).
-export([test/0]).

test() ->
ok = ping_pong:pong().

Erlang programErlang program and its unit test

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Error discovered by Concuerror

Checked 5 interleaving(s). 1 error found.

Error type : Exception
Details : {badarg,[{erlang,register,[ping_pong,<...>],[]},

...
Process P1 spawns process P1.1
Process P1.1 sends message `ping` to process P1
Process P1.1 exits (normal)
Process P1 registers process P1.1 (dead) as `ping_pong`
Process P1 exits ("Exception")

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Concuerror in a nutshell
A tool for systematic testing (aka stateless model
checking) of concurrent Erlang programs

Given a program and its test suite Concuerror
systematically explores process interleaving and
presents detailed interleaving information about
any errors that occur during the execution of
these tests

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Concuerror in a nutshell
Takes control of the scheduler and runs a
function (usually a test) to detect whether its
execution results in the following errors
− Process crashes and abnormal termination
− Assertion violations
− “Deadlocks”: lack of progress for processes

Totally automatic
− Explores all “interesting” interleaving sequences ...
− … possibly up to a preemption bound ...
− … and by employing some very clever algorithms

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Concuerror's properties
Easy to use
Scalable

Applicable to “real-world” programs
Precise

Any error found is possible to occur
Does not introduce new behaviors

Sound
All concurrency errors (for a test) can be found
Aims to capture all scheduling non-determinism
Exhaustively explores this non-determinism

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

x = 1;
y = 1;
x = 1;
y = 1;

x = 2;
y = 2;
x = 2;
y = 2;

2,12,1

1,01,0

0,00,0

1,11,1

2,22,2

2,22,22,12,1

2,02,0

2,12,12,22,2

1,21,2

2,02,0

2,22,2

1,11,1

1,11,1 1,21,2

1,01,0

1,21,2 1,11,1

y = 1;y = 1;

x = 1;x = 1;

y = 2;y = 2;

x = 2;x = 2;

Scheduling non-determinism
[Taken from CHESS tutorial]

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Sources of non-determinism
Scheduling non-determinism

Interleaving non-determinism
Processes can race to access shared resources
Processes can be preempted at arbitrary points

Timing non-determinism
• Sleeping processes can wake up at any point
• Timers can fire in arbitrary points/orders

Input non-determinism
Programs can be used in a variety of ways
Non-deterministic system calls (e.g. random())

Memory model effects

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Concuerror's anatomy
GUI
Instrumenter
Scheduler
“Replaying” machinery

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Concuerror's instrumentation (vsn 0.9)

pause() ->
receive scheduler_prompt -> ok end.

spawn_wrapper(F) ->
Fun = fun() -> pause(), F() end,
Pid = spawn(Fun),
notify_scheduler(spawn, Pid),
Pid.

send_wrapper(Dest, Msg) ->
Dest ! ?INSTR_MSG(Msg),
notify_scheduler(send, {Dest,Msg}),
pause(),
Msg.

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Process scheduling
• Each process is assigned a logical identifier (LID)

• that uniquely identifies the process
• Interleaving sequences are

• represented as sequences of LIDs
• explored using depth-first search

• For n processes with k preemption points each,
the number of interleaving sequences is
exponential in both n & k

• Space complexity is O(n2k)

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Another example

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Concuerror's search strategy

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Efficiency improvements
1. Blocking avoidance
2. Preemption bounding

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Blocking avoidance
• A process executing a receive statement with no

matching messages in its mailbox blocks
• Becomes active again only when a matching

message arrives
• Although checking a process mailbox interacts

with the shared state, it does not update it
• Interleaving sequences that will result in process

blocks are redundant and can be soundly ignored
We call this optimization blocking avoidance

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Preemption bounding
• Idea similar to iterative context bounding

[Musuvathi & Qadeer 2007]
• Builds on the hypothesis that most concurrency

errors involve a small number of context switches
• Eliminates exponential dependence on k
Preemption bounding
• Context bounding adapted to message passing
• Takes into account

• process blocks in receives
• process exits

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

x = 1;
y = 1;
x = 1;
y = 1;

x = 2;
y = 2;
x = 2;
y = 2;

2,12,1

1,01,0

0,00,0

1,11,1

2,22,2

2,22,22,12,1

2,02,0

2,12,12,22,2

1,21,2

2,02,0

2,22,2

1,11,1

1,11,1 1,21,2

1,01,0

1,21,2 1,11,1

Exploration with preemption bound = 1
[Adapted from CHESS tutorial]

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Evaluation & Experience
Applied Concuerror to some large code bases

One example: code of Dialyzer
Static analyzer for Erlang programs
About 28,000 LOC
Aggressively parallelized

On a relatively simple test, Concuerror reported
various interleaving sequences with a stuck
server process, i.e. a resource leak

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Evaluation & Experience
Applied Concuerror to some large code bases

Another example: code of mochiweb
Erlang library for building lightweight HTTP servers
About 12,000 LOC (including the test code)
Cleanly written code & (extensive?) test suite

One (serious?) bug found
Using a cast instead of a call to stop the socket
server (for mochiweb_socket_server:stop/0)
Confirmed by developer; fixed end of May 2013

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

usage: concuerror [<args>]
Arguments:
-t|--target module Run eunit tests for this module
-t|--target module function [args]

Specify the function to execute
-f|--files modules Specify the files (modules) to instrument
-o|--output file Specify the output file (default results.txt)
-p|--preb number|inf Set preemption bound (default is 2)
-I include_dir Pass the include_dir to concuerror
-D name=value Define a macro
--noprogress Disable progress bar
-q|--quiet Disable logging (implies --noprogress)
-v Verbose [use twice to be more verbose]
--fail-uninstrumented Fail if there are uninstrumented modules
--ignore modules It’s OK for these modules to be uninstrumented
--show-output Allow program under test to print to stdout
--wait-messages Wait for uninstrumented messages to arrive
--app-controller Start an (instrumented) application controller
-T|--ignore-timeout bound

Treat big after Timeouts as infinity timeouts
--gui Run concuerror with a graphical interface
--dpor Runs the experimental optimal DPOR version
--help Show this help message

Concuerror’s options

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Related testing tools
CHESS from Microsoft Research [Musuvathi et al.]

Similarities:
systematic testing tool for finding concurrency errors
iterative context bounding

Difference: uses platform-dependent wrappers
VeriSoft [Godefroid]

Erlang QuickCheck/PULSE [Claessen et al.]

McErlang [Fredlund and Svensson]

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Future work
Parallelize Concuerror's exploration engine
Investigate the interaction between PropEr (a
property-based testing tool) and Concuerror
Test suite minimization

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Concluding remarks
Conventional testing, e.g. unit testing, is not able to
expose concurrency errors
Using Concuerror not only allows us to see that our tests
pass, but also guarantees that the programs are robust
and correct w.r.t. these tests
In practice, a small preemption bound is enough to reveal
most concurrency-related defects
− Start with a small preemption bound and gradually increase

Exponential increase with number of processes
− Write tests for small # of processes and generalize

Concuerror provides detailed explanation about errors

Concuerror @ EUC ’13Systematic Testing for Finding Concurrency Errors

Thanks to the Concuerror developers

Alkis Gotovos
Maria Christakis
Stavros Aronis
Ilias Tsitsimpis

