
TESTING WEB SERVICES 
WITH 

WEBDRIVER AND QUICKCHECK

Alex Gerdes
(joint work with Thomas Arts, John Hughes, 

Hans Svensson and Ulf Norell)

 
QuviQ AB



ABOUT ME

• From the Netherlands, now living in Sweden

• Worked at Ericsson and ASTRON

• Did a PhD study: developed a FP tutor for Haskell

• Started last year at QuviQ to work on/with QuickCheck



CHANGE  YOUR  MIND 
ABOUT  TESTING!



QUICKCHECK

• Originally developed by John Hughes and Koen Claessen

• Property based testing

• Controlled randomness

• Shrinking

• QuickCheck libraries in many languages



QUVIQ QUICKCHECK

• Written in Erlang

• Many extensions: 

• Statem: testing using finite 
state machines

• Pulse: finding race conditions

• Symbolic test case 
generation

• Mocking (C and Erlang)

• Testing C-code

• Composable components



EXAMPLE
% reverse a list
rev(Xs) ->
  lists:foldl(fun(X, Acc) -> [X|Acc] end, Xs, []).

% Properties
prop_rev() ->
  ?FORALL(Xs, list(int()), rev(rev(Xs)) == Xs).

prop_model() ->
  ?FORALL(Xs, list(int()), 
          eqc:equals(rev(Xs), lists:reverse(Xs))).

prop_append() ->
  ?FORALL({Xs, Ys}, {list(int()), list(int())},
          rev(Xs ++ Ys) == rev(Ys) ++ rev(Xs)).
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TESTING WEB SERVICES

• Move from desktop to web applications/services

• Often created using agile development processes

• Many different environments

• Testing of web services lags behind

• Use property based testing!



SELENIUM

“Selenium automates browsers. That's it. What you do with that 
power is entirely up to you. Primarily it is for automating web 

applications for testing purposes, but is certainly not limited to just 
that. Boring web-based administration tasks can (and should!) also 

be automated as well.”



SELENIUM

• Create and run scripts

• Supported by a wide range of browsers and operating systems:

• Chrome, Internet Explorer, Opera, HtmlUnit and Firefox

•  Windows, Mac OS X, Linux, and Solaris

• Language support for : C#, Java, Python, Ruby, and partial support for 
Perl and PHP

• Widely used to create unit-tests and regression testing suites for 
web services



SELENIUM WEBDRIVER

• In version 2, Selenium introduced the WebDriver API

• Via WebDriver it is possible to drive the browser natively

• The browser can be local or remote – possible to use a grid test

• Languages implementing driver : C#, Java, Python, Ruby... and Erlang!



WEBDRIVER PROTOCOL

• What if your preferred language is not in the list?

• All WebDriver drivers communicates via HTTP using the WebDriver 
Wire Protocol

• It is a RESTful web service using JSON over HTTP

• The Wire Protocol consists of ~80 different commands controlling 
different aspects



WEBDRIVER IN ERLANG

• Implementation consists of:

• webdrv_cap – handle web browser capabilities

• webdrv_wire – purely functional implementation of the wire 
protocol

• webdrv_session – wrapper module for WebDriver sessions

• json – JSON library, written by Tony Garnock-Jones 
http://github.com/tonyg/erlang-rfc4627

http://github.com/tonyg/erlang-rfc4627
http://github.com/tonyg/erlang-rfc4627


WEBDRIVER COMMANDS

• Windows/Tabs – open, close, resize, set_position, maximize, ...

• Page elements – find, find relative, click, send_keys, submit, ...

• Navigation – back, forward, refresh, set_url, ...

• Timeouts – script timeout, page load timeout, ...

• Cookies – set, get, delete, ...



Demo



QUICKCHECK & WEBDRIVER 

• Combine QuickCheck and WebDriver

• Insert data generators and state properties

• Use QuickCheck (finite) state machine to 

• store system state

• generate valid sequences of selenium calls

• Rely on shrinking to find minimal counter example

• Play back a counter example



DUDLE

• Open source version of Doodle

• Polling for a time slot or opinion

• Multilingual

• Written in Ruby

• Clear and well defined interface



TESTING DUDLE

• Create polls

• Add and remove options

• Add and remove participants

• Vote for options



Lets test



SELENIUM IDE

• A GUI tool to construct 
Selenium test cases

• Plugin for Firefox

• Record, store, and play back



Demo



PARSING SELENESE

• Find elements is tiresome

• Record test cases using Selenium IDE

• Translate those to webdrv in Erlang

• Adapt where necessary



EPILOGUE

• Available on GitHub: http://github.com/Quviq/webdrv

• Try it! If it breaks: fix it!

• Future work: extract QC finite state machines from EUnit tests

• Possible exercises:

• Use webdrv on your (own) favourite website

• Extend the dudle testing

http://github.com/Quviq/webdrv
http://github.com/Quviq/webdrv

