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soundcloud

audio platform
~12 hours of audio/min.

reach 200 mil./month
(8% of internet)
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transcoding

user generated content
audio processing
image generation
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transcoding (2)

media stored in s3
worker pool on ec2

coordination?
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AMQP
the model (0.9)
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Subtitle

primitives

messages
exchanges

routing keys
queues
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Producer Exchange

ConsumerQueue

Queue



Subtitle

key benefit

producers
consumers

decoupled (scalable)
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transcoding
rails to cloud and back
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ruby, clojure, scala,
go, java, c, c++,

javascript, coffeescript
objective-c, python, 

erlang, haskell
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class Transcoding < ActiveRecord::Base
  def queue
    ex = declare_exchange('media')
    ex.publish('media.uploaded', {
      :uid => uid
    })
  end
end
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class Transcoder
  def subscribe
    ex = declare_exchange('media')
    qu = declare_queue('media.uploaded')
    qu.bind(ex)
    qu.subscribe do |headers, message|
      process(message)
      headers.ack
    end
  end
end
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class Transcoder
  def process(message)
    uid = message[:uid]

    # do some work

    ex = declare_exchage('media')
    ex.publish('media.finished', {
      :uid =>  uid,
      :mp3 => 's3://sc-media/uid.mp3'
    })
  end
end



Subtitle

broker

rabbitmq - erlang
rock stable
amqp 0.9.1
(black box)
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Application
Application

Application
Application

RabbitMQApplication

consume

publish

Worker

publish

consume

Amsterdam AWS (us-east-1)



transcoding, solved

autoscaling worker pool
scales quickly
handles spikes

solid broker impl.
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this works really well!
let's use it for everything!!!
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deferred processing

avoid runtime limitations
scale slow actions

quick HTTP responses
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transcoding-like services

classification
tagging

content identification
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environments

production.live.model.create
test.development.model.create
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activities

activity feeds
materialized for every user

(stored in cassandra)
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activities (2)

1. observe changes in domain 
models

2. determine subscribers
3. write to storage
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module ModelBroadcast
  def self.included(base)
    base.after_create do |m|
      publish('model.create', m.attributes)
    end
  end
end

class Comment < ActiveRecord::Base
  include ModelBroadcast
end
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Track.create({:user_id => Skrillex.id})

SELECT fan_id FROM followers WHERE user_id = 123;

ex = declare_exchange('activities.fanout')
fan_ids.each do |fan_id|
  ex.publish('activities.track', {
    :creator_id => Skrillex.id,
    :fan_id     => fan_id
  })
end
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so. much. stuff.
what could possibly go wrong...



the broker is down...
... we're down
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frequent downtimes

single, shared broker
steadily increasing volume

diurnal cycle, bursts
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partition workload

add another broker
use for activities only

use more queues
breathing room
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the broker is down...
... we're down - part 2
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high(er) availability
add scalability...
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clustering rabbitmq

multiple brokers as cluster
publish one

subscribe many
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RabbitMQRabbitMQ

LoadbalancerLoadbalancer

active-passive
keepalived

Worker

balance persistent 
connections publish

consume consume



client changes

tcp connection per broker
protocol heartbeats

reconnect
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benefits

simple
all logic in client

availability
scalability
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platforms

ruby
clojure, scala

erlang
go
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further work

more clusters
commodity hardware

semantic events
discovery
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Thank you! 


