

Scaling RabbitMQ at
SoundCloud

Sebastian Ohm (@sohm)

Erlang User Conference 2013

soundcloud

audio platform
~12 hours of audio/min.

reach 200 mil./month
(8% of internet)

title, date, 01 of 10

title, date, 01 of 10

transcoding

user generated content
audio processing
image generation

title, date, 01 of 10

transcoding (2)

media stored in s3
worker pool on ec2

coordination?

title, date, 01 of 10

AMQP
the model (0.9)

title, date, 01 of 10

Subtitle

primitives

messages
exchanges

routing keys
queues

title, date, 01 of 10

title, date, 01 of 10

Producer Exchange

ConsumerQueue

Queue

Subtitle

key benefit

producers
consumers

decoupled (scalable)

title, date, 01 of 10

transcoding
rails to cloud and back

title, date, 01 of 10

ruby, clojure, scala,
go, java, c, c++,

javascript, coffeescript
objective-c, python,

erlang, haskell

title, date, 01 of 10

Subtitle

title, date, 01 of 10

class Transcoding < ActiveRecord::Base
 def queue
 ex = declare_exchange('media')
 ex.publish('media.uploaded', {
 :uid => uid
 })
 end
end

Subtitle

title, date, 01 of 10

class Transcoder
 def subscribe
 ex = declare_exchange('media')
 qu = declare_queue('media.uploaded')
 qu.bind(ex)
 qu.subscribe do |headers, message|
 process(message)
 headers.ack
 end
 end
end

Subtitle

title, date, 01 of 10

class Transcoder
 def process(message)
 uid = message[:uid]

 # do some work

 ex = declare_exchage('media')
 ex.publish('media.finished', {
 :uid => uid,
 :mp3 => 's3://sc-media/uid.mp3'
 })
 end
end

Subtitle

broker

rabbitmq - erlang
rock stable
amqp 0.9.1
(black box)

title, date, 01 of 10

title, date, 01 of 10

Application
Application

Application
Application

RabbitMQApplication

consume

publish

Worker

publish

consume

Amsterdam AWS (us-east-1)

transcoding, solved

autoscaling worker pool
scales quickly
handles spikes

solid broker impl.

title, date, 01 of 10

title, date, 01 of 10

this works really well!
let's use it for everything!!!

title, date, 01 of 10

deferred processing

avoid runtime limitations
scale slow actions

quick HTTP responses

title, date, 01 of 10

transcoding-like services

classification
tagging

content identification

title, date, 01 of 10

environments

production.live.model.create
test.development.model.create

title, date, 01 of 10

activities

activity feeds
materialized for every user

(stored in cassandra)

title, date, 01 of 10

title, date, 01 of 10

activities (2)

1. observe changes in domain
models

2. determine subscribers
3. write to storage

title, date, 01 of 10

Subtitle

title, date, 01 of 10

module ModelBroadcast
 def self.included(base)
 base.after_create do |m|
 publish('model.create', m.attributes)
 end
 end
end

class Comment < ActiveRecord::Base
 include ModelBroadcast
end

title, date, 01 of 10

Track.create({:user_id => Skrillex.id})

SELECT fan_id FROM followers WHERE user_id = 123;

ex = declare_exchange('activities.fanout')
fan_ids.each do |fan_id|
 ex.publish('activities.track', {
 :creator_id => Skrillex.id,
 :fan_id => fan_id
 })
end

title, date, 01 of 10

so. much. stuff.
what could possibly go wrong...

the broker is down...
... we're down

title, date, 01 of 10

frequent downtimes

single, shared broker
steadily increasing volume

diurnal cycle, bursts

title, date, 01 of 10

title, date, 01 of 10

partition workload

add another broker
use for activities only

use more queues
breathing room

title, date, 01 of 10

the broker is down...
... we're down - part 2

title, date, 01 of 10

high(er) availability
add scalability...

title, date, 01 of 10

clustering rabbitmq

multiple brokers as cluster
publish one

subscribe many

title, date, 01 of 10

title, date, 01 of 10

RabbitMQRabbitMQ

LoadbalancerLoadbalancer

active-passive
keepalived

Worker

balance persistent
connections publish

consume consume

client changes

tcp connection per broker
protocol heartbeats

reconnect

title, date, 01 of 10

title, date, 01 of 10

benefits

simple
all logic in client

availability
scalability

title, date, 01 of 10

platforms

ruby
clojure, scala

erlang
go

title, date, 01 of 10

further work

more clusters
commodity hardware

semantic events
discovery

title, date, 01 of 10

Thank you!

