
Big Data Real-Time Analytics

Knut Nesheim · @knutin
GameAnalytics

‣ What we do

‣ What we want

‣ Our solution

Topics

Me

‣ Klarna

‣ Wooga

‣ Game Analytics

‣ github.com/knutin

Analytics SaaS for games

Game Analytics

‣ Startup, venture funded, ~2 years old

‣ HQ in Copenhagen, engineering in Berlin

‣ Need to move fast

‣ Willing to take on technical debt

‣ Be ready for traffic growth

‣ Big games are big, millions of DAU

GA.Event.Business(“sheep”, “gold”, 200);

Metrics

‣ Daily Active Users, Monthly Active Users

‣ Revenue

‣ Histogram of event values

Idea: some real-time metrics

Suitable subset

Scope creep: real-time everything

GA v2.0

MapReduce architecture, v1.0

iOS SDK Android SDK Unity SDK

Collectors

HTTP

S3

MongoDB

Online

MapReduce

OfflineSpecial stuff

Website

Work queue

Streaming architecture, v2.0

iOS SDK Android SDK Unity SDK

Collectors

S3

HTTP

Stream DynamoDB

Query API

Hist
oryReal-time

Website Customers

2013-10-14 2013-10-15

DynamoDB RAM

Today

Streaming

‣ Partition on game

‣ One process per game, autonomous

‣ Prototype very promising

Implementation

Game process
‣ Process files sequentially

‣ Keep running results in RAM

‣ Flush to DB when window closes

‣ Answer real-time queries

‣ Put all in one node

“Metric DSL”

HyperLogLog
‣ Estimate cardinality

‣ Clever hash tricks

‣ Millions unique with <1% error in ~40k words

‣ Unions

‣ “hyper”: Erlang HLL++ from Google paper[0]

‣ Will open source Soon (TM)

[0]: “HyperLogLog in Practice: Algorithmic Engineering of
a State of The Art Cardinality Estimation Algorithm”

Recordinality[0]

‣ Estimate frequency of values

‣ User session count

‣ Keeps a reservoir, clever hash tricks

‣ Will open source Soon (TM)

[0]: “Data Streams as Random Permutations: the
Distinct Element Problem”

Next step: More parallelization

loop(State) ->
 NewState = process(next_file(), State),
 loop(NewState).

Game #123

Worker #1

Part = process(next_file(), empty()),
game_123 ! Part.

loop(State) ->
 receive
 Part ->
 NewState = merge(Part, State)),
 loop(NewState)
 end.

Game #123

Worker #1

Game #123

Worker #2 Worker #N

Manager

Mapper #1

Reducer #123

Mapper #2 Mapper #N

Scheduler

Scheduler

‣ Take ideas from Hadoop, Riak Pipe

‣ Manage limited resources

‣ Distribute work across nodes

‣ Colocate processing with state storage

Implementation

‣ DIY?

‣ riak_core for state processes?

‣ riak_pipe for managing work?

Conclusion

Erlang: The bad parts

‣ Big process state not great

‣ Lots of updates, lots of garbage

Erlang: The good parts

‣ Total allocated RAM >30GB

‣ Per process heap is gold

‣ Easy parallelization, distribution

‣ Looking forward to maps!

Questions?

Knut Nesheim · @knutin
GameAnalytics

www.gameanalytics.com

http://www.gameanalytics.com
http://www.gameanalytics.com

