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‣ What we do

‣ What we want

‣ Our solution

Topics



Me

‣ Klarna

‣ Wooga

‣ Game Analytics

‣ github.com/knutin



Analytics SaaS for games



Game Analytics

‣ Startup, venture funded, ~2 years old

‣ HQ in Copenhagen, engineering in Berlin

‣ Need to move fast

‣ Willing to take on technical debt

‣ Be ready for traffic growth

‣ Big games are big, millions of DAU



GA.Event.Business(“sheep”, “gold”, 200);



Metrics

‣ Daily Active Users, Monthly Active Users

‣ Revenue

‣ Histogram of event values



Idea: some real-time metrics

Suitable subset



Scope creep: real-time everything

GA v2.0



MapReduce architecture, v1.0
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Streaming architecture, v2.0
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Streaming

‣ Partition on game

‣ One process per game, autonomous

‣ Prototype very promising



Implementation



Game process
‣ Process files sequentially

‣ Keep running results in RAM

‣ Flush to DB when window closes

‣ Answer real-time queries

‣ Put all in one node



“Metric DSL”



HyperLogLog
‣ Estimate cardinality

‣ Clever hash tricks

‣ Millions unique with <1% error in ~40k words

‣ Unions

‣ “hyper”: Erlang HLL++ from Google paper[0]

‣ Will open source Soon (TM)

[0]: “HyperLogLog in Practice: Algorithmic Engineering of 
a State of The Art Cardinality Estimation Algorithm”



Recordinality[0]

‣ Estimate frequency of values

‣ User session count

‣ Keeps a reservoir, clever hash tricks

‣ Will open source Soon (TM)

[0]: “Data Streams as Random Permutations: the 
Distinct Element Problem”



Next step: More parallelization



loop(State) ->
    NewState = process(next_file(), State),
    loop(NewState).

Game #123



Worker #1

Part = process(next_file(), empty()),
game_123 ! Part.

loop(State) ->
    receive
        Part ->
            NewState = merge(Part, State)),
            loop(NewState)
    end.

Game #123



Worker #1

Game #123

Worker #2 Worker #N

Manager



Mapper #1

Reducer #123

Mapper #2 Mapper #N

Scheduler



Scheduler

‣ Take ideas from Hadoop, Riak Pipe

‣ Manage limited resources

‣ Distribute work across nodes

‣ Colocate processing with state storage



Implementation

‣ DIY?

‣ riak_core for state processes?

‣ riak_pipe for managing work?



Conclusion



Erlang: The bad parts

‣ Big process state not great

‣ Lots of updates, lots of garbage



Erlang: The good parts

‣ Total allocated RAM >30GB

‣ Per process heap is gold

‣ Easy parallelization, distribution

‣ Looking forward to maps!



Questions?
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