Implementation and Verification of a
Consensus Protocol
N

Andrew Stone

about your

Distributed Systems are
HARD

Many ways to skin a

JusT BECAUSE YOU'VE ALWAYS DONE IT THAT WAY
DOESN'T MEAN I1T'S NOT INCREDIBLY STUPID.

Asynchronous
Replication

. d Master
client >
Slave

Asynchronous
Replication

client

Slave

Asynchronous
Replication

: MENI§
client P=
ok
d
Slave

Asynchronous
Replication

client

Slave

Asynchronous
Replication

client

Slave
d

Asynchronous
Replication

: b MEN=s
client >
d
Slave
d

Asynchronous
Replication

MENI§
a »)

client

Slave
d

Asynchronous
Replication

: MENI§
client P=
ok
a »)
Slave
d

Asynchronous
Replication

client

Consistent

or
Available

1f (promote secondary) {

stderr (“possible data loss”);
telse

stderr (“system unavailable”);

(JO °) J

Yep, You just traded
safety for latency

Synchronous
Replication

. d Master
client >
Slave

Synchronous
Replication

client

Slave

Synchronous
Replication

client

Synchronous
Replication

client

Slave
d

Synchronous
Replication

MENI§
d
ok

client

Synchronous
Replication

ok MENI§
client B
d
Slave
d

Synchronous
Replication

: b MEN=s
client >
d
Slave
d

Synchronous
Replication

MENI§
a »)

client

Slave
d

Synchronous
Replication

Synchronous
Replication

timeout ME T8
client IR
a b

Safety vs. Liveness

Goal: Maintain Safety
while tolerating failure

©O Node Failures Allowed while Available

3
2.25
Q:+++0
.5
- TR O
0.75 -
0 Q++O
| 2 3 4 5 6

Cluster Size

Problems

® VWho coordinates writes and reads?

® What interleavings are ‘safe’?

Consensus

RAFT

® Distributed State Machine Replication
® Designed to facilitate understanding

® John Ousterhout and Diego Ongaro

izability

All nodes agree on an identical sequence of
operations

Monotonic “Term’ acts as a logical clock to prevent
time from going backwards

Operations are committed when written to a log
on majority of nodes AND the term of the entry is
the current term

Once committed an operation cannot be removed
from the log

. Committed
- Uncommitted

Index | 2 3 4 5 6

vl v2 v3 v4 | v5 v6

Term | | | 3 3 3

Replicated Log

. Committed

. Uncommitted Lelii]ez.:r‘s/}ip

Index | 2 3

vl v2 v3 v4 v5

Term | | | 3 4

Replicated Log

| eader Election

All nodes start in follower state

After a random timeout, one becomes
candidate

Candidate increments term, requests a vote

Followers vote for the candidate if the
candidate log and term are up to date

Log Replication

Leader sends Append Entries calls to each follower

If previous log entry and term agree with the
follower log contents, follower replies with success

Leader keeps track of follower log indexes,
decrements index on failure and sends older data

If Majority replies with success, leader commits
entry, responds to client and tells followers the
latest commit index on next heartbeat

Heartbeats

Append Entries

® Prevent followers from becoming
candidates unnecessarily

® Allow followers to detect failed leader or
network partition and start a new election

® | eader replays log to followers who are
behind due to either prior failure or
netsplit

Rafter

® A Library for building strongly consistent
distributed systems in Erlang

® |mplements Raft in Erlang

® |solates the application developer from the
intricacies of consensus

Why Raft!

® | wanted to fully grok consensus
® Easier to understand than Paxos

® Every day someone tries to implement
consensus in an ad-hoc manner

Why Erlang?

Erlang is terrific for building reliable
distributed systems

| currently spend > 90% of my coding time
in Erlang

Consensus is NOT solved in Erlang

mnesia, gen_leader, gproc don'’t tolerate
netsplits

Core Abstractions

Peers

® Each peer is made up of 2 supervised
processes

® A gen_ fsm implements the raft protocol
® A gen_server wraps the persistent log

® An APl module hides the implementation

—include 1lib("rafter/lib/rafter opts.hrl").

start node() ->
Name = peerl,
Me = {Name, node()},
Opts = #rafter opts{state machine=rafter backend ets,

logdir="./data"},
rafter:start node(Me, Opts).

set config(Peer, NewServers) ->
rafter:set config(Peer, NewServers).

put (Peer, Table, Key, Value) ->
rafter:op(Peer, {put, Table, Key, Value}).

get (Peer, Table, Key) ->
rafter:read op(Peer, {get, Table, Key}).

Replicated Log

APl operates on Log Entries
Log Entries contain commands
Commands transparent to rafter

Cmds encoded with term_to_binary/|

File Header Format

<<Version:8>>

Entry Format

<<Shal:20/binary, Type:8, Term:64, Index:64, Size:32, Cmd/binary>>

Entry Trailer Format

<<Crc:32, ConfigStart:64, EntryStart:64, ?MAGIC/64>>

Backend State Machine

® OTP behaviour

® Operates on commands via callbacks from
consensus fsm

® (Callbacks run on each node when
commands are committed or read quorum

achieved

-module(rafter backend).
—export ([behaviour info/1]).

behaviour info(callbacks) ->

[{init, 0}, {read, 1}, {write, 1}];
behaviour_info() ->

undefined.

read({get, Table, Key}) ->
try
case ets:lookup(Table, Key) of
[{Key, Value}] -> {ok, Value};
[]1] -> {ok, not found}
end
catch :E ->
{error, E}
end;

write({put, Table, Key, Value}) ->
try
ets:insert (Table, {Key, Value}),
{ok, Value}
catch :E ->
{error, E}
end;

Consensus Module

Implements Raft protocol in gen_fsm
3 states - follower, candidate, leader

Logs persistent data via rafter_log
gen_server

Pure functions handling dynamic
reconfiguration and quorums abstracted
out to rafter_ config

oL
oL

API

—export([start/0, stop/l, start/1l, start 1link/3,
leader/1, op/2, set config/2,

send/2, send sync/2, get state/l]).

3% States

-export([follower/2, follower/3,
candidate/2, candidate/3,
leader/2, leader/3]).

2% Election timeout has expired. Go to candidate state iff

we are a voter.

follower (timeout, #state{config=Config, me=Me}=State) ->
case rafter config:has vote(Me, Config) of

false ->

Duration = election timeout(),

{next state, follower, State, Duration};
true ->

{next state, candidate, State, 0}
end

we

follower({read op, }, From, #state{leader=Leader}=State) ->
Reply = {error, {redirect, Leader}},
{reply, Reply, follower, State, ?timeout()};

$% We are out of date. Go back to follower state.
candidate (#vote{term=VoteTerm, success=false}, #state{term=Term}=State)
when VoteTerm > Term -=->
NewState = step down(VoteTerm, State),
{next state, follower, NewState, NewState#state.timer duration};

2% Sweet, someone likes us! Do we have enough votes to get elected?
candidate (#vote{success=true, from=From}, #state{responses=Responses, me=Me,
config=Config}=State) ->
NewResponses = dict:store(From, true, Responses),
case rafter config:quorum(Me, Config, NewResponses) of
true -=->
NewState = become leader(State),
{next state, leader, NewState, 0};
false ->
NewState = State#state{responses=NewResponses},
{next state, candidate, NewState, ?timeout()}
end.

leader (timeout, State) ->
Duration = heartbeat timeout(),
NewState = State#state{timer start=os:timestamp(),
timer duration=Duration},
send append entries(State),
{next state, leader, NewState, Duration};

leader({op, {Id, Command }}, From, #state{term=Term}=State) ->
Entry = #rafter entry{type=op, term=Term, cmd=Command},
NewState = append(Id, From, Entry, State, leader),
{next state, leader, NewState, ?timeout()}.

Implementation
Tradeofts

Distributed Erlang
Single FSM for the consensus algorithm
Separating read path from write path

Rolling my own log file format

What isn’t done!

Handling of exactly-once semantics for
non-idempotent commands

Log compaction
A nice DB built on top of rafter
More tests, More documentation

Performance

Testing

Property Based lesting

—include lib("egc/include/eqc.hrl").

prop_ reverse() ->
?FORALL(L, list(int()),
L == lists:reverse(lists:reverse(L))).

eqc:quickcheck (eqgc:numtests (1000, prop reverse())).

Stateful Property Tests

® eqc_statem behaviour
® Create a model of what your testing

® Verify that model

eqc_statem callbacks

initial state/0
precondition/2
command/ |
postcondition/3
next state/3

invariant/| (optional)

command(_ State) ->
frequency(|[
{10, {call, rafter backend ets, write, [{new, table gen()}1}},
{3, {call, rafter backend ets, write, [{delete, table gen()}]}},
{100, {call, rafter backend ets, write, [{delete, table gen(), key gen()}1}},
{200, {call, rafter backend ets, read, [{get, table gen(), key gen()}1}},
{200, {call, rafter backend ets, write,
[{put, table gen(), key gen(), value_gen()}1}},
{20, {call, rafter backend ets, read, [list tables]}},
{20, {call, rafter backend ets, read, [{list keys, table gen()}1}}1).

next state(#state{tables=Tables}=S, Result,
{call, rafter backend ets, write, [{new, Table}]1}) ->
S#state{tables={call, sets, add element, [Table, Tables]}};

postcondition(#state{},
{call, rafter backend ets, write, [{new, Table}]},
{ok, Table}) ->
true;
postcondition(#state{tables=Tables},
{call, rafter backend ets, write, [{new, Table}]},
{error, badarg}) =->
sets:1s_element (Table, Tables);

invariant (State) ->
tables are listed in ets tables table(State) andalso
tables exist(State) andalso
data is correct(State).

tables exist(#state{tables=Tables}) ->
EtsTables = sets:from list(ets:all()),
sets:is subset(Tables, EtsTables).

data is correct(#state{data=Data}) ->
lists:all(fun({{Table, Key}, Value}) ->
[{Key, Value}] =:= ets:lookup(Table, Key)
end, Data).

An Actual Bug

This should only happen if two machines are configured differently during
initial configuration such that one configuration includes both proposed leaders
and the other only itself. Additionally, there 1is not a quorum of either
configuration's servers running.

(i.e. rafter:set config(b, [k, b, j]), rafter:set config(d, [1,k,b,d,0]).
when only b and d are running.)

o° 00 00 OO0 OO0 OO0 OO op
o° 00 00 OO0 OO0 OO0 OO op

candidate (#vote{term=VoteTerm, success=false},
#state{term=Term, init config=[Id, From]}=State) when VoteTerm > Term ->
gen fsm:reply(From, {error, invalid initial config}),
State2 = State#state{init config=undefined, config=#config{state=blank}},
NewState = step down(VoteTerm, Statel),
{next state, follower, NewState, NewState#state.timer duration};

Model Checking
=/=

Proof of correctness

Other Test Tools

® Pulse - http://quvig.com

® Concuerror - http://concuerror.com/

® PropEr - http://proper.softlab.ntua.gr/

http://quvic.com
http://quvic.com
http://concuerror.com/
http://concuerror.com/
http://proper.softlab.ntua.gr/
http://proper.softlab.ntua.gr/

