Implementation and Verification of a Consensus Protocol in

Andrew Stone

about your

Distributed Systems are HARD

Many ways to skin a

TRADITION

JUST BECAUSE YOU'VE ALWAYS DONE IT THAT WAY DOESN'T MEAN IT'S NOT INCREDIBLY STUPID.

Consistent or Available

```
if (promote_secondary) {
    stderr("possible data loss");
}else{
    stderr("system unavailable");
}
```


Yep, you just traded safety for latency

Safety vs. Liveness

Goal: Maintain Safety while tolerating failure

Quorums

Node Failures Allowed while Available

Problems

- Who coordinates writes and reads?
- What interleavings are 'safe'?

Consensus

RAFT

- Distributed State Machine Replication
- Designed to facilitate understanding
- John Ousterhout and Diego Ongaro

izability

- All nodes agree on an identical sequence of operations
- Monotonic 'Term' acts as a logical clock to prevent time from going backwards
- Operations are committed when written to a log on majority of nodes AND the term of the entry is the current term
- Once committed an operation cannot be removed from the log

Replicated Log

Replicated Log

Leader Election

- All nodes start in follower state
- After a random timeout, one becomes candidate
- Candidate increments term, requests a vote
- Followers vote for the candidate if the candidate log and term are up to date

ALORITY Rules

Log Replication

- Leader sends Append Entries calls to each follower
- If previous log entry and term agree with the follower log contents, follower replies with success
- Leader keeps track of follower log indexes, decrements index on failure and sends older data
- If Majority replies with success, leader commits entry, responds to client and tells followers the latest commit index on next heartbeat

Heartbeats =:= Append Entries

- Prevent followers from becoming candidates unnecessarily
- Allow followers to detect failed leader or network partition and start a new election
- Leader replays log to followers who are behind due to either prior failure or netsplit

Rafter

- A Library for building strongly consistent distributed systems in Erlang
- Implements Raft in Erlang
- Isolates the application developer from the intricacies of consensus

Why Raft?

- I wanted to fully grok consensus
- Easier to understand than Paxos
- Every day someone tries to implement consensus in an ad-hoc manner

Why Erlang?

- Erlang is terrific for building reliable distributed systems
- I currently spend > 90% of my coding time in Erlang
- Consensus is NOT solved in Erlang
- mnesia, gen_leader, gproc don't tolerate netsplits

Core Abstractions

Peers

- Each peer is made up of 2 supervised processes
 - A gen_fsm implements the raft protocol
 - A gen_server wraps the persistent log
- An API module hides the implementation

```
-include lib("rafter/lib/rafter opts.hrl").
start node() ->
 Name = peer1,
 Me = \{Name, node()\},\
 Opts = #rafter_opts{state_machine=rafter_backend_ets,
                      logdir="./data"},
 rafter:start node(Me, Opts).
set config(Peer, NewServers) ->
  rafter:set config(Peer, NewServers).
put(Peer, Table, Key, Value) ->
 rafter:op(Peer, {put, Table, Key, Value}).
get(Peer, Table, Key) ->
 rafter:read_op(Peer, {get, Table, Key}).
```

Replicated Log

- API operates on Log Entries
- Log Entries contain commands
- Commands transparent to rafter
- Cmds encoded with term_to_binary/I

File Header Format

<<Version:8>>

Entry Format

<<Sha1:20/binary, Type:8, Term:64, Index:64, Size:32, Cmd/binary>>

Entry Trailer Format

<<Crc:32, ConfigStart:64, EntryStart:64, ?MAGIC/64>>

Backend State Machine

- OTP behaviour
- Operates on commands via callbacks from consensus fsm
- Callbacks run on each node when commands are committed or read quorum achieved

```
-module(rafter_backend).

-export([behaviour_info/1]).

behaviour_info(callbacks) ->
    [{init, 0}, {read, 1}, {write, 1}];
behaviour_info(_) ->
    undefined.
```

```
read({get, Table, Key}) ->
    try
        case ets:lookup(Table, Key) of
            [{Key, Value}] -> {ok, Value};
            [] -> {ok, not found}
        end
    catch _:E ->
        {error, E}
    end;
write({put, Table, Key, Value}) ->
    try
        ets:insert(Table, {Key, Value}),
        {ok, Value}
    catch _:E ->
        {error, E}
    end;
```

Consensus Module

- Implements Raft protocol in gen_fsm
- 3 states follower, candidate, leader
- Logs persistent data via rafter_log gen_server
- Pure functions handling dynamic reconfiguration and quorums abstracted out to rafter_config

```
%% Election timeout has expired. Go to candidate state iff
we are a voter.
follower(timeout, #state{config=Config, me=Me}=State) ->
   case rafter config:has vote(Me, Config) of
        false ->
            Duration = election timeout(),
            {next state, follower, State, Duration};
       true ->
            {next_state, candidate, State, 0}
   end;
follower({read_op, _}, _From, #state{leader=Leader}=State) ->
   Reply = {error, {redirect, Leader}},
    {reply, Reply, follower, State, ?timeout()};
```

```
%% We are out of date. Go back to follower state.
candidate(#vote{term=VoteTerm, success=false}, #state{term=Term}=State)
         when VoteTerm > Term ->
    NewState = step down(VoteTerm, State),
    {next state, follower, NewState, NewState#state.timer duration};
%% Sweet, someone likes us! Do we have enough votes to get elected?
candidate(#vote{success=true, from=From}, #state{responses=Responses, me=Me,
                                                 config=Config}=State) ->
    NewResponses = dict:store(From, true, Responses),
    case rafter config:quorum(Me, Config, NewResponses) of
       true ->
            NewState = become leader(State),
            {next state, leader, NewState, 0};
        false ->
            NewState = State#state{responses=NewResponses},
            {next state, candidate, NewState, ?timeout()}
    end.
```

Implementation Tradeoffs

- Distributed Erlang
- Single FSM for the consensus algorithm
- Separating read path from write path
- Rolling my own log file format

What isn't done?

- Handling of exactly-once semantics for non-idempotent commands
- Log compaction
- A nice DB built on top of rafter
- More tests, More documentation
- Performance

Testing

Property Based Testing

Stateful Property Tests

- eqc_statem behaviour
- Create a model of what your testing
- Verify that model

eqc_statem callbacks

- initial_state/0
- precondition/2
- command/I
- postcondition/3
- next_state/3
- invariant/I (optional)

```
next_state(#state{tables=Tables}=S, Result,
    {call, rafter backend ets, write, [{new, Table}]}) ->
        S#state{tables={call, sets, add element, [Table, Tables]}};
postcondition(#state{}),
    {call, rafter backend ets, write, [{new, Table}]},
    {ok, Table}) ->
        true;
postcondition(#state{tables=Tables},
    {call, rafter backend ets, write, [{new, Table}]},
    {error, badarg}) ->
        sets:is element(Table, Tables);
```

```
invariant(State) ->
    tables are listed in ets tables table(State) andalso
    tables exist(State) andalso
    data is correct(State).
tables exist(#state{tables=Tables}) ->
   EtsTables = sets:from list(ets:all()),
    sets:is subset(Tables, EtsTables).
data_is_correct(#state{data=Data}) ->
    lists:all(fun({{Table, Key}, Value}) ->
                [{Key, Value}] =:= ets:lookup(Table, Key)
              end, Data).
```

An Actual Bug

Model Checking =/=

Proof of correctness

Other Test Tools

- Pulse http://quviq.com
- Concuerror http://concuerror.com/
- PropEr http://proper.softlab.ntua.gr/

