
Erlang Factory San Francisco, March 6, 2014

Avoiding Single Process Bottlenecks By Using Ets Concurrency

Jay Nelson @duomark https://github.com/duomark (Sponsored by TigerText)

https://github.com/duomark

Erlang Factory San Francisco, March 6, 2014

✤ Architecture is a language of patterns!

✤ A language encourages a preferred style!

✤ Architect author's task is to express a style simply!

✤ Pairing a style to an ill-suited problem IS bad

Disclaimer: Architectures are Neither Good nor Bad

Erlang Factory San Francisco, March 6, 2014

✤ Watch for two patterns in this discussion!

✤ Cooperating set of OTP components!

✤ Replacing OTP components with alternatives!

✤ concurrently accessible data structures!

✤ collection of data in place of OTP constructs!

!

✤ The ideas here relate to high-volume multicore erlang!

✤ Some issues may never occur for your environment

Patterns of erlang

Erlang Factory San Francisco, March 6, 2014

Part I: OTP Encourages Communicating
Sequential Processes (CSP)

Erlang Factory San Francisco, March 6, 2014

✤ Many processes; each independent!

✤ Per process features!

✤ separate control, stack and heap!

✤ self-contained memory space!

✤ dedicated garbage collector!

✤ process dictionary!

✤ message mailbox / queue

Erlang code is inherently single-threaded

Erlang Factory San Francisco, March 6, 2014

✤ Process supervisors manage children individually

OTP encourages single process bottlenecks

Erlang Factory San Francisco, March 6, 2014

✤ Servers are central architectural concepts!

✤ serialize transactions!

✤ provide transaction independence

OTP encourages single process bottlenecks (cont.)

Erlang Factory San Francisco, March 6, 2014

✤ Servers organize computation!

✤ simplify reasoning about processing!

✤ support multi-process join / synch (i.e., wait)!

✤ Servers are single process bottlenecks!

✤ limit transaction volume!

✤ choke systems under heavy load!

✤ long message queues result in timeouts and crashes

OTP encourages single process bottlenecks (cont.)

Erlang Factory San Francisco, March 6, 2014

✤ All data structures are in one process' memory space!

!

✤ Caveat: binaries can be stored in shared heap!

✤ binary ref is transparent to erlang code!

✤ reference to binary is process local!

✤ memory optimization only, read-only construct

Language constructs are process local

Erlang Factory San Francisco, March 6, 2014

!

Part II: Erlang Term Storage (ets)

Erlang Factory San Francisco, March 6, 2014

✤ Comes with the VM, part of OTP!

✤ The one truly concurrent, cross-process data structure !

✤ key / value store (tuples hashed on one element)!

!

✤ Lives in memory separate from processes!

✤ each tuple is accessible concurrently with others!

✤ simultaneous access to the same tuple is serialized

Ets features

Erlang Factory San Francisco, March 6, 2014

✤ An ets table is on par with a process!

✤ VM implements as in-memory data store using C!

✤ Creating process is owner of the ets table!

✤ table is eliminated when owning process dies!

✤ Is not garbage collected!

✤ user-managed with insert, update, delete semantics!

✤ allows multi-process access!

✤ excellent for large datasets

Ets table behavior

Erlang Factory San Francisco, March 6, 2014

Ets table illustrated

Erlang Factory San Francisco, March 6, 2014

✤ Table-level write lock!

✤ Use write_concurrency for multiple writers!

✤ Use read_concurrency on multicore infrequent write!

✤ Use both if access is big bursts of either!

✤ Read/write locks for each tuple!

✤ Multi-core simultaneous access on separate keys!

✤ Accessing value copies data to process space!

✤ record with binary field values is very efficient

Ets concurrency mechanics

Erlang Factory San Francisco, March 6, 2014

✤ Atomic operations: update_counter, update_element!

✤ Beware read + update, NOT concurrent-safe!

✤ Fold, select, first/next, et al are also NOT safe!

✤ Be aware of which process is the owner of table

Caveats for ets concurrency

Erlang Factory San Francisco, March 6, 2014

✤ Kill owner process/delete table for fast garbage collect!

✤ Split read data and write data to different tables!

✤ specify read_concurrency or write_concurrency!

✤ Partition data by key!

✤ shard on key ranges!

✤ cascade tables for tree-based partitioning!

✤ separate pid per key for collision-free concurrency

Ets concurrency strategies (partitioning)

Erlang Factory San Francisco, March 6, 2014

✤ Use update_counter / update_element for shared keys!

✤ Inc by zero to read int value from write-only table!

✤ Meta-data / data set separation!

!

✤ Public tables allow for read and write concurrency!

✤ requires cooperative trust of all functions!

✤ protected tables introduce single process bottleneck

Ets concurrency strategies (data access)

Erlang Factory San Francisco, March 6, 2014

Part III: Designing an Ets Solution

Erlang Factory San Francisco, March 6, 2014

✤ Control when tables are created and destroyed!

✤ Ensure a specific process is the guaranteed owner!

✤ Don’t ever create from random function calls!

!

✤ You can probably avoid using owner inheritance!

✤ little benefit for added complexity!

✤ supervisors with rest-for-one are sufficient

Use supervised processes to create ets

Erlang Factory San Francisco, March 6, 2014

Supervising ets creation

1. Rest-for-one supervisor!

2. First server is created!

3. Create ets table(s)!

4. Create ets table workers!

5. Signal kicks off worker
processing!

6. Workers access ets table(s)

Erlang Factory San Francisco, March 6, 2014

✤ New and rename can atomically create a new table!

✤ Insert / insert_new atomically creates 1 to N objects!

✤ Delete removes a single table atomically

Use atomic table-level operations

Erlang Factory San Francisco, March 6, 2014

✤ Only works on tables of set or ordered_set!

✤ Cannot update the key element of a tuple!

✤ Update_counter can add / sub integer from current value(s)!

✤ don’t read ets before calling; returns int value after action!

✤ guaranteed atomic across all simultaneous access!

✤ allows multiple updates but only on same tuple!

✤ Conditionals limited to replacing overmax/undermin result!

✤ dependent field decisions not possible!

✤ designed for warping counters that reach max value

Use atomic update_counter

Erlang Factory San Francisco, March 6, 2014

✤ Only works on tables of set or ordered_set!

✤ Cannot update the key element of a tuple!

!

✤ Clobbers existing value(s)!

✤ forced updates only, not based on current value!

✤ allows multiple updates but only on same tuple

Use atomic update_element

Erlang Factory San Francisco, March 6, 2014

✤ Use update_counter to reserve int range of key(s)!

✤ Non-atomic updates can be used to prepare new data!

✤ Careful reservations allow rollbacks at any time!

✤ clear or delete intermediate data!

✤ unreserve atomically!

✤ mark to skip invalid data using update_element!

✤ adjust reservation indices with update_counter!

✤ Use update_counter/update_element to publish

Use reserve/write/publish semantics

Erlang Factory San Francisco, March 6, 2014

✤ Reserve a portion of the key space!

✤ Assemble working data in reserved space!

✤ Signal unambiguously that data is complete!

✤ Select finished data from working area!

✤ Insert_new atomically creates all in active partition!

✤ Common partition strategies (more are possible):!

✤ By pid or registered name prefix!

✤ By data content

Use key partition for working area

Erlang Factory San Francisco, March 6, 2014

Key Partition
reserve area

1. Working partition reserved!

a) Working area updates!

b) Work completion signaled!

2. Working copies selected!

a) New entries are created!

b) Working copies deleted!

3. Working partition freed

Erlang Factory San Francisco, March 6, 2014

✤ Init_table and all multiple object deletes!

✤ Iterators such as first/next and fold!

✤ includes all lookup/select/match functions!

✤ tab2list/tab2file!

✤ from_dets/to_dets!

✤ Any write dependent on and subsequent to a read

Beware of non-atomic access

Erlang Factory San Francisco, March 6, 2014

Part IV: Erlang Patterns of Concurrency
 https://github.com/duomark/epocxy

https://github.com/duomark/epocxy

Erlang Factory San Francisco, March 6, 2014

✤ OTP compatible library!

✤ Running in production at TigerText since Aug!

✤ Use as an included_application in *.app.src!

✤ Implements ets-based concurrency constructs!

✤ Hides complexity of correct atomic operations!

✤ Provides an architectural API for concurrency

Github open source project

Erlang Factory San Francisco, March 6, 2014

Firehose of data

Erlang Factory San Francisco, March 6, 2014

✤ FIFO, LIFO and Ring ets_buffer!

✤ Implemented as an array in an ets ordered_set table!

✤ Meta-data key space partitioned from data key space!

✤ {{meta, Task_Type}, Size, High_Water, Type, …}!

✤ {{Task_Type, Array_Index}, Create_Time, Data}!

✤ All task_types share a single ets (named ‘ets_buffer’)!

✤ Non-dedicated buffers store data in metadata table!

✤ Dedicated buffers use separate ets table for content

Controlled capture of concurrently arriving data

Erlang Factory San Francisco, March 6, 2014

✤ Write uses reserve / publish!

✤ Array index increment to reserve!

✤ Insert new value(s)!

✤ Publish new top of array!

✤ Read uses reserve / retry!

✤ Bump array index to reserve!

✤ Read / retry entry later!

✤ Delete

Ets_buffer implementation

Erlang Factory San Francisco, March 6, 2014

Ets_buffer illustrated

Erlang Factory San Francisco, March 6, 2014

Ets_buffer illustrated

Erlang Factory San Francisco, March 6, 2014

Ets_buffer illustrated

Erlang Factory San Francisco, March 6, 2014

Ets_buffer illustrated

Erlang Factory San Francisco, March 6, 2014

Ets_buffer illustrated

Erlang Factory San Francisco, March 6, 2014

✤ Array index may use bignums if running long enough!

✤ Currently all three share same code base!

✤ Distributed, concurrent LIFO arrays are hard!

✤ FIFO and Ring know number of elements!

✤ LIFO does not!

✤ Potential enhancements!

✤ Linked list LIFO implementation instead!

✤ Ring read vs write is not well distinguished yet

Ets_buffer issues

Erlang Factory San Francisco, March 6, 2014

Unbridled Concurrency

Erlang Factory San Francisco, March 6, 2014

✤ Use spawn whenever concurrency needed!

✤ Concurrency can exceed CPU capabilities!

✤ No back pressure on requests!

✤ Load spikes can cause VM exhaustion!

✤ Leads to erroneous use of worker pools!

✤ fraught with single process bottleneck symptoms!

✤ timeouts / restarts create cascading storms of data

Unbridled concurrency (cont.)

Erlang Factory San Francisco, March 6, 2014

Bridled concurrency

Erlang Factory San Francisco, March 6, 2014

✤ Configure concurrency by type (atom)!

✤ Invoke spawns using concurrency type!

✤ Each type has a max simultaneous concurrency limit!

✤ Can spawn (async) or execute to get return value (sync)!

✤ Timing of execution optionally recorded automatically!

✤ M:F(A) captured on spawns (dangerous memory usage potential)!

✤ Options when limit exceeded!

✤ execute inline (CPU back pressure)!

✤ refuse to execute (user-provided back pressure logic)!

Bridled concurrency (cont.)

Erlang Factory San Francisco, March 6, 2014

✤ Central ets for all concurrency limits!

✤ Separate ets for init args and spawn / execute timing!

✤ init arg recording could cause OOM!

✤ timing recorded when process ends!

✤ library may need to record timing incrementally

Cxy_ctl implementation

Erlang Factory San Francisco, March 6, 2014

Cache Expiration Overload

© Matteo Ianeselli / Wikimedia Commons / CC-BY-3.0

Erlang Factory San Francisco, March 6, 2014

✤ Avoid setting timers for each cached object!

✤ Use two generations of cache!

✤ Return hit from newest generation!

✤ Miss? Then search older generation!

✤ Hit causes migration of datum to new generation!

✤ Returns matching datum!

✤ Miss causes DB fetch to newest generation!

✤ Expiration is create new, then delete old generation

Generational Caching

Erlang Factory San Francisco, March 6, 2014

Generational caching illustrated

Erlang Factory San Francisco, March 6, 2014

✤ Cxy_cache table with metadata about generations!

✤ Tuple per cache name with table ids for gens!

✤ Maintains hit/miss statistics per generation!

✤ One unnamed ets table for each generation!

✤ New generation triggers!

✤ Periodic time basis (e.g., every 5 minutes)!

✤ Number of generation accesses threshold!

✤ User function on name, access count, time

Cxy_cache (ets generations)

Erlang Factory San Francisco, March 6, 2014

✤ Generation checking done by polling!

✤ Supervised FSM owns the ets tables!

✤ Defaults to polling every 60 seconds!

✤ User can override polling frequency!

✤ Avoids overhead on cache fetch / insert!

✤ Avoids race conditions on new generation create!

✤ Option for no new generations!

✤ User determines that cache always fits in RAM

Cxy_cache (cont.)

Erlang Factory San Francisco, March 6, 2014

✤ Synchronization barriers!

✤ Limiting access to resources (c.f. ferd/dispcount)!

✤ Any (1 of N), Some (M of N) and All (N of N)!

✤ Higher-level compositions of existing patterns!

✤ Active task queues (ets_buffer plus cxy_ctl)!

✤ Dynamic workers concurrently consume tasks !

✤ Pipeline of active queues to manage staged progress!

✤ Open Source Community pull requests / suggestions

Future plans

Erlang Factory San Francisco, March 6, 2014

✤ Ets will help increase concurrency!

✤ Design concurrent elements of architecture!

✤ Partition the data set!

✤ Employ reserve / write / publish semantics!

✤ Use atomic operations to advantage!

✤ Prefer community built libraries!

✤ Getting concurrency right is difficult!

✤ Consider tools like Concuerror

Conclusion

