
A Status Update of BEAMJIT, the Just-in-Time
Compiling Abstract Machine

Frej Drejhammar and Lars Rasmusson
<{frej,lra}@sics.se>

140609

Who am I?

Senior researcher at the Swedish Institute of Computer Science
(SICS) working on programming tools and distributed systems.

Acknowledgments

Project funded by Ericsson AB.

Joint work with Lars Rasmusson <lra@sics.se>.

What this talk is About

An introduction to how BEAMJIT works and a detailed look at
some subtle details of its implementation.

Outline

Background

BEAMJIT from 10000m

BEAMJIT-aware Optimization

Compiler-supported Profiling

Future Work

Questions

Just-In-Time (JIT) Compilation

Decide at runtime to compile “hot” parts to native code.

Fairly common implementation technique.

McCarthy’s Lisp (1969)
Python (Psyco, PyPy)
Smalltalk (Cog)
Java (HotSpot)
JavaScript (SquirrelFish Extreme, SpiderMonkey,
JägerMonkey, IonMonkey, V8)

Motivation

A JIT compiler increases flexibility.

Tracing does not require switching to full emulation.
Cross-module optimization.

Compiled BEAM modules are platform independent:

No need for cross compilation.
Binaries not strongly coupled to a particular build of the
emulator.

Integrates naturally with code upgrade.

Project Goals

Do as little manual work as possible.

Preserve the semantics of plain BEAM.

Automatically stay in sync with the plain BEAM, i.e. if bugs
are fixed in the interpreter the JIT should not have to be
modified manually.

Have a native code generator which is state-of-the-art.

Eventually be better than HiPE (steady-state).

Plan

Use automated tools to transform and extend the BEAM.

Use an off-the-shelf optimizer and code generator.

Implement a tracing JIT compiler.

BEAM: Specification & Implementation

BEAM is the name of the Erlang VM.

A register machine.

Approximately 150 instructions which are specialized to
around 450 macro-instructions using a peephole optimizer
during code loading.

Instructions are CISC-like.

Hand-written (mostly) C directly threaded interpreter.

No authoritative description of the semantics of the VM
except the implementation source code!

Tools

LLVM – A Compiler Infrastructure, contains a collection of
modular and reusable compiler and toolchain technologies.
Uses a low-level assembler-like representation called LLVM-IR.

Clang – A mostly gcc-compatible front-end for C-like
languages, produces LLVM-IR.

libclang – A C library built on top of Clang, allows the AST of
a parsed C-module to be accessed and traversed.

Tracing Just-in-time Compilation

Figure out the execution path in your program which is most
frequently traversed:

Profile to find hot spots.

Record the execution flow from there.

Turn the recorded trace into native-code.

Run the native-code.

Outline

Background

BEAMJIT from 10000m
Components
Profiling
Tracing
Native-code Generation
Concurrency
Performance

BEAMJIT-aware Optimization

Compiler-supported Profiling

Future Work

Questions

BEAMJIT from 10000m

Use light-weight profiling to detect when we are at a place
which is frequently executed.

Trace the flow of execution until we have a representative
trace.

Compile trace to native code.

Monitor execution to see if the trace should be extended.

Profile Trace Generate Native Code Run Native

BEAMJIT from 10000m: Components

Code
Generator

Fragment
Library

Profiling
Interpreter

Tracing
Interpreter

Cleanup
Interpreter

LLVM

Glue

Blue-colored parts generated automatically by a
libClang-based program.
Separate interpreters result in better native-code for the
different execution modes compared to a single interpreter
supporting all modes.
We have to limit the set of entry points to the profiling
interpreter to preserve performance – Cleanup-interpreter
executes partial BEAM-opcodes.

BEAMJIT from 10000m: Profiling

The compiler identifies locations, anchors, which are likely to
be the start of a frequently executed BEAM-code sequence.

The runtime-system measures the execution intensity of each
anchor.

A high enough intensity triggers tracing.

... one of the details, more later.

BEAMJIT from 10000m: Tracing

Tracing uses a separate interpreter.

During tracing we record the BEAM PC and the identity of
each (interpreter) basic-block we execute.

A trace is considered successful if:

We reach the anchor we started from.
We are scheduled out.

Follow along previously recorded traces to limit memory
consumption.

Native-code generation is triggered when we have had N
successive successful traces without the recorded trace
growing.

BEAMJIT from 10000m: Native-code Generation

Glue together LLVM-IR-fragments for the trace.

Fragments are extracted from the BEAM implementation and
pre-compiled to LLVM-bitcode (LLVM-IR) and loaded during
BEAMJIT initialization.

Guards are inserted to make sure we stay on the traced path.
A failed guard results in a call to the Cleanup-interpreter.

Hand the resulting IR off to LLVM for optimization and
native-code emission.

LLVM optimizer extended with a BEAM-aware pass (more
later).

beam_emu.c CFG

fragments.c

jit_emu.c Trace

LLVM optimizer Native codeBitcode IR generator

BEAMJIT from 10000m: Concurrency

IR-generation, optimization and native-code emission runs in a
separate thread.

Tracing is disabled when compilation is ongoing.

LLVM is slow, asynchronous compilation masks the cost of
JIT-compilation.

BEAMJIT from 10000m: Performance

Currently single-core (Poor-man’s SMP-support started
working last week).

Currently hit or miss, although more hit than miss.

Removes overhead for instruction decoding (more later).

For short benchmarks tracing overhead dominates.

Some discrepancies we have yet to explain.

Performance (Good)

b
in

to
te

rm
b
m

b
in

ar
y
tr

ee
s

b
s

b
m

b
s

si
m

p
le

b
m

b
s

su
m

b
m

ca
ll

ta
il

b
m

ex
te

rn
al

ca
ll

ta
il

b
m

lo
ca

l

ca
ll

ta
il

b
m

fa
n
n
k
u
ch

re
d
u
x

fi
b

fi
b

o

fl
oa

t
b
m

fr
eq

b
m

fu
n

b
m

h
ar

m
on

ic

le
n
gt

h

le
n
gt

h
c

le
n
gt

h
u li
fe

li
st

s
te

st

m
an

d
el

b
ro

t

m
at

ri
x

m
ea

n

m
ea

n
n
n
c

n
re

v

p
id

ig
it

s

p
se

u
d
ok

n
ot

q
so

rt

re
cu

rs
iv

e

si
ev

e

sm
it

h

st
ab

le

su
m ta
k

ta
k
fp

ya
w

s
h
tm

l zi
p

zi
p
3

zi
p

n
n
c

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

ru
n

-t
im

e
(w

al
l

cl
o
ck

)
Cold

Hot

Execution time of BEAMJIT normalized to the execution time
of BEAM (1.0)

Left column: synchronous compilation

Right column: asynchronous compilation

Cold: no preexisting native code

Hot: stable state

Performance (Bad)

ap
re

tt
y
p
r

b
ar

n
es

ca
ll

b
m

ca
ll

ta
il

b
m

u
n
ro

ll
ed

ca
ll

ta
il

b
m

ex
te

rn
al

u
n
ro

ll
ed

ca
ll

ta
il

b
m

lo
ca

l
u
n
ro

ll
ed

ch
am

en
eo

s
ch

am
en

eo
sr

ed
u
x

d
ec

o
d
e

ex
ce

p
t

fa
n
n
k
u
ch

fu
n

b
m

u
n
ro

ll
ed h
as

h

h
as

h
2

h
ea

p
so

rt h
u
ff

n
es

te
d
lo

op

p
ar

ti
al

su
m

s

ri
n
g

st
rc

at

th
re

ad
ri

n
g

w
es

to
n
e

0

1

2

3

4

5

6

7

8

9
N

or
m

al
iz

ed
ru

n
-t

im
e

(w
al

l
cl

o
ck

)
Cold

Hot

(Same setup as previous slide)
Some behavior is still under investigation
Unrolling kills performance

Outline

Background

BEAMJIT from 10000m

BEAMJIT-aware Optimization
Optimizations in LLVM
A hypothetical BEAM Opcode
Optimization
Result

Compiler-supported Profiling

Future Work

Questions

Optimizations in LLVM

State-of-the-art optimizations.

Surprisingly good at eliminating redundant tests etc.

Cannot help us with a frequently occuring pattern.

A hypothetical BEAM Opcode
PC-1 ...

PC &&add_immediate

PC+1 <register-index>

PC+2 <immediate-value>

PC+3 ...

i n t r e g s [N] ;
. . .
add immed iate :

i n t r e g = l o a d (PC+1) ;
i n t imm = l o a d (PC+2) ;

r e g s [r e g] += imm ;
PC += 3 ;
goto ∗∗PC ;

Optimization

/∗ P r e v i o u s e n t r y ∗/
i n t r e g = l o a d (PC+1) ;
i n t imm = l o a d (PC+2) ;

r e g s [r e g] += imm ;
PC += 3 ;
/∗ t h e n e x t e n t r y f o l l o w s ∗/

This is Erlang, the code area is constant, PC points to
constant data.

The trace stores PC values.

Guards check that we are on the trace.

Known PC on entry to each basic block.

Do the loads at compile-time

Result

r e g s [1/∗ l o a d (PC+1)∗/]+=2/∗ l o a d (PC+2)∗/ ;
PC = 0 xcab00d1e ;
/∗ t h e n e x t e n t r y f o l l o w s ∗/

The PC-update will most likely be optimized away too.

Outline

Background

BEAMJIT from 10000m

BEAMJIT-aware Optimization

Compiler-supported Profiling
Motivating Profiling
Profiling at Run-time
Where Should the Compiler Insert Anchors?

Future Work

Questions

Motivating Profiling

The purpose of profiling is to find frequently executed
BEAM-code to convert into native code.

Reducing the run-time for the most frequently executed parts
of a program will have the largest impact for the effort we
invest.

Traditionally inner loops are considered a good target.

The compiler can flag loop heads – The run-time does not
need to be smart.

We call the flagged locations in the program for anchors.

Profiling at Run-time

Maintain a time stamp and counter for each anchor.

Measure execution intensity by incrementing a counter if the
anchor was visited recently, reset otherwise.

Trigger tracing when count is high enough.

Blacklist anchor which:

Never produce a successful trace.
Where we, when executing native code, leave the trace
without executing one path through the trace at least once.

Where Should the Compiler Insert Anchors?

At the head of loops!

Erlang does not have syntactic looping constructs.

List-comprehensions do not count.

To iterate is human, to recurse divine – Add an anchor at the
head of every function.

Is this enough?

Where Should the Compiler Insert Anchors?

mul4 (N) −>
anchor () ,
c a s e N o f

0 −> 0 ;
N −> 4 + mul4 (N−1)

end .

How many loops can you see?

Where Should the Compiler Insert Anchors?

mul4 (N) −>
anchor () ,
c a s e N o f

0 −> 0 ;
N −>

Tmp = mul4 (N−1) ,
anchor () ,
4 + Tmp

end .

An anchor is needed after each call which is not in a tail
position.

Is this enough?

Where Should the Compiler Insert Anchors?

Remember:

A trace starts at an anchor and ends when:

We reach the anchor we started from.
We are scheduled out.

What does this imply for an event handler?

Where Should the Compiler Insert Anchors?

h a n d l e r (S t a t e) −>
anchor () ,
r e c e i v e

{add , Arg} −>
h a n d l e r (S t a t e + Arg) ;

{ sub , Arg} −>
h a n d l e r (S t a t e − Arg)

end .

Where Should the Compiler Insert Anchors?

h a n d l e r (S t a t e) −>
anchor () ,

M = w a i t f o r m e s s a g e () ,
c a s e M o f

{add , Arg} −>
h a n d l e r (S t a t e + Arg) ;

{ sub , Arg} −>
h a n d l e r (S t a t e − Arg) ;

−>
p o s t p o n e d e l i v e r y (M)

end .

Execution path: scheduled in → do-pattern-matching → call
handler → trigger-tracing → scheduled out.

Where Should the Compiler Insert Anchors?

h a n d l e r (S t a t e) −>
anchor () ,

M = w a i t f o r m e s s a g e () ,
anchor () ,
c a s e M o f

{add , Arg} −>
h a n d l e r (S t a t e + Arg) ;

{ sub , Arg} −>
h a n d l e r (S t a t e − Arg) ;

−>
p o s t p o n e d e l i v e r y (M)

end .

Execution path: scheduled in → trigger-tracing →
do-pattern-matching → call handler → scheduled out.

Outline

Background

BEAMJIT from 10000m

BEAMJIT-aware Optimization

Compiler-supported Profiling

Future Work
Full SMP Support
Compile BIFs
Optimize with Knowledge of the Heap

Questions

Future Work: Full SMP Support

Currently:

Profiling and tracing by one scheduler.

All schedulers run native code.

Breakpoints and purge broken.

In the future:

Cooperative profiling and tracing by all schedulers.

Full support for purge and breakpoints.

Future Work: Compile BIFs

Currently:

We only JIT-compile the interpreter loop.

BIFs are opaque.

In the future:

Extend JIT-compilation to include BIFs.

Future Work: Optimize with Knowledge of the
Heap

Eliminate the construction of objects on the heap when they
are not used:
{ok, R} = make_result()

Replicate what HiPE does.

With a JIT-compiler we should be able to do this across
modules.

Attempt to make this generic enough to handle all forms of
boxing/unboxing.

Outline

Background

BEAMJIT from 10000m

BEAMJIT-aware Optimization

Compiler-supported Profiling

Future Work

Questions

Questions?

	Background
	Just-In-Time Compilation
	Project Goals
	Plan
	BEAM: Specification & Implementation
	Tools
	Tracing Just-in-time Compilation

	BEAMJIT from 10000m
	Components
	Profiling
	Tracing
	Native-code Generation
	Concurrency
	Performance

	BEAMJIT-aware Optimization
	Optimizations in LLVM
	A hypothetical BEAM Opcode
	Optimization
	Result

	Compiler-supported Profiling
	Motivating Profiling
	Profiling at Run-time
	Where Should the Compiler Insert Anchors?

	Future Work
	Full SMP Support
	Compile BIFs
	Optimize with Knowledge of the Heap

	Questions

