
Thursday, 3 July 14

Catalyze Change

José Valim @josevalim

Dave Thomas @pragdave

2

Thursday, 3 July 14

We Have A Problem

• We are sitting on the solution to many of
today's problems

• We've had these solutions for 15 years

• Yet we are still marginal

3

Thursday, 3 July 14

Why?

4

Thursday, 3 July 14

Dear Abbey…
5

Thursday, 3 July 14

I keep trying to apply Elixir/Erlang to problems I
have, and I keep running up against issues with the
terrible state of the ecosystem. Whatever the Erlang
devs have been up to for the last 25 years, it certainly
wasn't focusing on being a citizen of the modern
internet.

I've killed many, many hours deciphering bad
documentation and fighting bugs in XML and HTTP
libraries over the past several weeks. Most recently I
thought I had an idea which would be a perfect
application of Elixir/Erlang, and then discovered that
its sole IMAP client library is moribund and
considered unusable by the one person I could find
who has tried it.

Now, obviously, "the libraries suck" is a bad argument
against a language - Ruby was in just as bad a state
back in 2001 when I came to it. But there were
compelling reasons to want to change that situation.
In the case of Ruby, the reason was "it's a joy to code
in".

As I understand it, the compelling reason for Erlang is
that "it has a great VM for concurrent/distributed
development".

But here's where I run into a problem. 5 years ago,
that argument made a ton of sense. But now Clojure
is a thing, and Go is a thing. Scala too, for that matter.
Clojure and Scala have the full Java ecosystem behind
them. Go can call directly into C code, so it has the
whole C/C++ ecosystem to draw from.

None of them have Erlang's semantic quirks, like its
obsession with arity. And all of them have Actor/CSP/
Pi Calculus concurrency abstractions baked-in, just
like Erlang.

Given all this, it seems like the sole reason to invest
time into Elixir over some of these other languages is
on the faith that the VM is simply that much better
than the JVM, or the Go runtime.

At this point, my intuition is screaming at me to ditch
the Erlang VM and focus my concurrent language
energy on Clojure and/or Go. I keep worrying that I'll
fight my way through the ecosystem issues, only to
find myself with a bunch of code that runs on a VM
that isn't materially better than the JVM, and can't be
instrumented and tuned the way the JVM can.

6

Thursday, 3 July 14

I keep trying to apply Elixir/Erlang to problems I
have, and I keep running up against issues with the
terrible state of the ecosystem. Whatever the Erlang
devs have been up to for the last 25 years, it certainly
wasn't focusing on being a citizen of the modern
internet.

I've killed many, many hours deciphering bad
documentation and fighting bugs in XML and HTTP
libraries over the past several weeks. Most recently I
thought I had an idea which would be a perfect
application of Elixir/Erlang, and then discovered that
its sole IMAP client library is moribund and
considered unusable by the one person I could find
who has tried it.

Now, obviously, "the libraries suck" is a bad argument
against a language - Ruby was in just as bad a state
back in 2001 when I came to it. But there were
compelling reasons to want to change that situation.
In the case of Ruby, the reason was "it's a joy to code
in".

As I understand it, the compelling reason for Erlang is
that "it has a great VM for concurrent/distributed
development".

But here's where I run into a problem. 5 years ago,
that argument made a ton of sense. But now Clojure
is a thing, and Go is a thing. Scala too, for that matter.
Clojure and Scala have the full Java ecosystem behind
them. Go can call directly into C code, so it has the
whole C/C++ ecosystem to draw from.

None of them have Erlang's semantic quirks, like its
obsession with arity. And all of them have Actor/CSP/
Pi Calculus concurrency abstractions baked-in, just
like Erlang.

Given all this, it seems like the sole reason to invest
time into Elixir over some of these other languages is
on the faith that the VM is simply that much better
than the JVM, or the Go runtime.

At this point, my intuition is screaming at me to ditch
the Erlang VM and focus my concurrent language
energy on Clojure and/or Go. I keep worrying that I'll
fight my way through the ecosystem issues, only to
find myself with a bunch of code that runs on a VM
that isn't materially better than the JVM, and can't be
instrumented and tuned the way the JVM can.

6

Thursday, 3 July 14

Not a Random Rant

• We hear it a lot

• From well-known, knowledgeable people

7

Thursday, 3 July 14

We Need to Reconcile

we are sitting on the
solution to many of
today's problems

"ditch the Erlang VM and focus
my concurrent language

energy on Clojure and/or Go”

vs.

8

Thursday, 3 July 14

Why Do We Care?

• We're happy

• We have what we need

• It works for us

• Someone else's problem

9

Thursday, 3 July 14

But We Should Care

• For the good of ourselves

• For the long-term survival of our culture.

• More conferences, more companies, more
jobs, more clever ideas…

• For the good of world!

10

Thursday, 3 July 14

We’re Better

• We have the best VM and the best language

• So we don't have to worry about the
surface features.

11

Thursday, 3 July 14

But the barriers to
entry are too high

12

Thursday, 3 July 14

Activation Energy
Ex

te
rn

al
 E

ne
rg

y

Energy needed to
get started

13

Thursday, 3 July 14

Activation Energy
Ex

te
rn

al
 E

ne
rg

y

Energy needed to
get started

13

Thursday, 3 July 14

Activation Energy
Ex

te
rn

al
 E

ne
rg

y

Gain in benefit

13

Thursday, 3 July 14

Hmmm…
Erlang looks
interesting

14

Thursday, 3 July 14

This is harder
than I thought

15

Thursday, 3 July 14

I hate feeling
stupid

16

Thursday, 3 July 14

http://us.cdn281.fansshare.com/photos/keanureeves/keanu-reeves-wallpaper-1469967791.jpg

http://images2.fanpop.com/image/photos/9200000/Keanu-Reeves-keanu-reeves-9231566-1280-1024.jpg
http://wallpaperhdfree.com/wp-content/uploads/2013/03/Angry-Keanu-Reeves.jpg

http://halfagiraffe.tv/wp-content/uploads/2010/10/KeanuReeves1.jpg
http://us.cdn200.fansshare.com/photo/keanureeves/keanu-reeves-83926830.jpg

http://wallpaperhdfree.com/wp-content/uploads/2013/03/Keanu-Reeves-Best-2013-Wallpaper.jpg

I’m happy
 as I was

17

Thursday, 3 July 14

http://us.cdn281.fansshare.com/photos/keanureeves/keanu-reeves-wallpaper-1469967791.jpg
http://us.cdn281.fansshare.com/photos/keanureeves/keanu-reeves-wallpaper-1469967791.jpg
http://images2.fanpop.com/image/photos/9200000/Keanu-Reeves-keanu-reeves-9231566-1280-1024.jpg
http://images2.fanpop.com/image/photos/9200000/Keanu-Reeves-keanu-reeves-9231566-1280-1024.jpg
http://wallpaperhdfree.com/wp-content/uploads/2013/03/Angry-Keanu-Reeves.jpg
http://wallpaperhdfree.com/wp-content/uploads/2013/03/Angry-Keanu-Reeves.jpg
http://halfagiraffe.tv/wp-content/uploads/2010/10/KeanuReeves1.jpg
http://halfagiraffe.tv/wp-content/uploads/2010/10/KeanuReeves1.jpg
http://us.cdn200.fansshare.com/photo/keanureeves/keanu-reeves-83926830.jpg
http://us.cdn200.fansshare.com/photo/keanureeves/keanu-reeves-83926830.jpg
http://wallpaperhdfree.com/wp-content/uploads/2013/03/Keanu-Reeves-Best-2013-Wallpaper.jpg
http://wallpaperhdfree.com/wp-content/uploads/2013/03/Keanu-Reeves-Best-2013-Wallpaper.jpg

And that’s why
the Matrix
is written

in Java

18

Thursday, 3 July 14

Lower the Barrier
Ex

te
rn

al
 E

ne
rg

y

19

Thursday, 3 July 14

Catalyst Reduces Input
Ex

te
rn

al
 E

ne
rg

y

20

Thursday, 3 July 14

You Are The Catalyst

21

Thursday, 3 July 14

So Let’s Put
On our

Outsider
Hats

22

Thursday, 3 July 14

23

Thursday, 3 July 14

create erlang application

23

Thursday, 3 July 14

24

Thursday, 3 July 14

24

Thursday, 3 July 14

25

Thursday, 3 July 14

25

Thursday, 3 July 14

26

Thursday, 3 July 14

26

Thursday, 3 July 14

27

Thursday, 3 July 14

28

Thursday, 3 July 14

28

Thursday, 3 July 14

29

Thursday, 3 July 14

29

Thursday, 3 July 14

$ git clone git://github.com/rebar/rebar.git
Cloning into 'rebar'...
Resolving deltas: 100% (3633/3633), done.
$ cd rebar
$./bootstrap
Recompile: src/rebar
Recompile: src/rebar_abnfc_compiler
Recompile: src/rebar_app_utils
Recompile: src/rebar_appups
. . .
Recompile: src/rebar_xref
==> rebar (compile)
==> rebar (escriptize)
Congratulations! You now have a self-contained script
called "rebar" in your current working directory. Place
this script anywhere in your path and you can use rebar
to build OTP-compliant apps.
$

30

Thursday, 3 July 14

$./rebar create-app app-id=my-app
==> rebar (create-app)
Writing src/myapp.app.src
Writing src/myapp_app.erl
Writing src/myapp_sup.erl

31

Thursday, 3 July 14

$./rebar create-app app-id=my-app
==> rebar (create-app)
Writing src/myapp.app.src
Writing src/myapp_app.erl
Writing src/myapp_sup.erl

31

$ cd my-app
No such file or directory: my-app

Thursday, 3 July 14

$./rebar create-app app-id=my-app
==> rebar (create-app)
Writing src/myapp.app.src
Writing src/myapp_app.erl
Writing src/myapp_sup.erl

31

$ cd my-app
No such file or directory: my-app

$ cd src
$ ls
myapp.app.src! ! ! ! rebar_file_utils.erl
myapp_app.erl! ! ! ! rebar_getopt.erl
myapp_sup.erl! ! ! !rebar_lfe_compiler.erl
rebar.erl!! ! ! rebar_log.erl
rebar_abnfc_compiler.erl! ! rebar_mustache.erl
rebar_app_utils.erl!! !! rebar_neotoma_compiler.erl
rebar_appups.erl! ! ! rebar_otp_app.erl

Thursday, 3 July 14

$./rebar create-app app-id=my_app
==> MyApp (create-app)
Writing src/my_app.app.src
Writing src/my_app_app.erl
Writing src/my_app_sup.erl

$./rebar compile
==> MyApp (compile)
Compiled src/my_app_app.erl
Compiled src/my_app_sup.erl

$ erl -pa ebin -s my_app
Erlang/OTP 17 [RELEASE CANDIDATE 1] [erts-6.0]
[source] [64-bit] [smp:4:4] [async-threads:10] [hipe]
[kernel-poll:false]

{"init terminating in do_boot",{undef,[{my_app,start,
[],[]},{init,start_it,1,[]},{init,start_em,1,[]}]}}

Crash dump was written to: erl_crash.dump
init terminating in do_boot ()

32

Thursday, 3 July 14

$ erl -pa ebin -s my_app
. . .
{"init terminating in do_boot",{undef,[{my_app,start,
[],[]},{init,start_it,1,[]},{init,start_em,1,[]}]}}

Crash dump was written to: erl_crash.dump
init terminating in do_boot ()

• Why are errors displayed as Erlang terms?

• What is the error

• (remember, I’m new to Erlang)

• What should I do next?

33

Thursday, 3 July 14

Erlang user

Ex
te

rn
al

 E
ne

rg
y

Me

34

Thursday, 3 July 14

Erlang user

Ex
te

rn
al

 E
ne

rg
y

Me

34

Thursday, 3 July 14

Erlang user

Ex
te

rn
al

 E
ne

rg
y

Me Me: Happy user of
something else

34

Thursday, 3 July 14

This is just the mechanics

Thinking in Erlang is hard, too…
- Pattern matching
- Recursion
- Higher Order Functions
- Anonymous functions
- Expression-based conditionals (case/if)
- Single Assignment
- Immutability (and the lack for while and for loops)
- Not using objects

(Fred Herbert 2/13/14)

35

Thursday, 3 July 14

Nested Data Structures

36

Thursday, 3 July 14

#{
 RoomId =>
 #room{
 users=#{
 UserId => [Codes]
 }
 }
}.

37

Thursday, 3 July 14

User joins a room

Rooms#{RoomId}#room.users#{UserId} += [NewCode]

38

Thursday, 3 July 14

join_room(#{RoomId := Room} = Rooms,
 RoomId, UserId, NewCode) ->
 Rooms#{RoomId := join_room(Room, UserId, NewCode)}.

join_room(#room{users=Users} = Room, UserId, NewCode) ->
 Room#room{users=join_room(Users, UserId, NewCode)};

join_room(#{UserId := Codes} = Users, UserId, NewCode) ->
 Users#{UserId := join_room(Codes, NewCode)}.

join_room(Codes, NewCode) ->
 [NewCode|Codes].

User joins a room

39

Thursday, 3 July 14

Is this the correct
design?

40

Thursday, 3 July 14

Clojure

• get_in

• assoc_in

• update_in

41

Thursday, 3 July 14

In Erlang

update_in(Rooms, [RoomId, #room.users, UserId],
 fun(Codes) -> [NewCode|Codes] end)

42

Thursday, 3 July 14

Haskell Lenses

https://github.com/jlouis/erl-lenses

43

Thursday, 3 July 14

https://github.com/jlouis/erl-lenses
https://github.com/jlouis/erl-lenses

OTP

44

Thursday, 3 July 14

45

I need to write
an application

Thursday, 3 July 14

45

I need to write
an applicationOT

P!

Thursday, 3 July 14

46

I need to
handle events

Thursday, 3 July 14

46

I need to
handle eventsOT

P!

Thursday, 3 July 14

47

I need to do what is
best for my customer

Thursday, 3 July 14

47

I need to do what is
best for my customerOT

P!

Thursday, 3 July 14

48

I need to
store state

Thursday, 3 July 14

48

I need to
store stateOT

P!

Thursday, 3 July 14

49

I need world peace

Thursday, 3 July 14

49

I need world peace

OT
P!

Thursday, 3 July 14

50

O
T
P
!

Thursday, 3 July 14

50

O
T
P
!

Thursday, 3 July 14

50

O
T
P
!

Thursday, 3 July 14

OTP is Cool, But…

• High ceremony

• Steep learning curve

• Much duplication

• cut and paste code

• API vs. handler

51

Thursday, 3 July 14

Simple Problem

• Need to parse a configuration file and
access its data throughout the application
life cycle

52

Thursday, 3 July 14

-module(config).

-behaviour(gen_server).

%% API
-export([start_link/0]).

%% gen_server callbacks
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,
 terminate/2, code_change/3]).

-define(SERVER, ?MODULE).

start_link() ->
 gen_server:start_link({local, ?SERVER}, ?MODULE, [], []).

init([]) ->
 {ok, parse_config()}.

handle_call(_Request, _From, State) ->
 Reply = ok,
 {reply, Reply, State}.

handle_cast(_Msg, State) ->
 {noreply, State}.

handle_info(_Info, State) ->
 {noreply, State}.

terminate(_Reason, _State) ->
 ok.

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

Config Server

53

Thursday, 3 July 14

(def config (agent (parse-config)))

(await (send config ...))

@config

Config using Agents

54

Thursday, 3 July 14

Futures

55

Thursday, 3 July 14

Futures

55

Thursday, 3 July 14

(new Future(getUsers))
 .onSuccess(...)
 .onFailure(...)

56

Thursday, 3 July 14

Erlang mismatch

• Callback soup

• Conflated error handling

57

Thursday, 3 July 14

They want to start a
computation, asynchronously,
and later read its value back

58

Thursday, 3 July 14

task = new Task(action)
// some computation
task.Wait()

.NET Task Parallel Library

59

Thursday, 3 July 14

From = self(),
Pid = spawn_link(fun() ->
 From ! {self(), Action()}
 end),

% some computation

receive
 {Pid,Res} -> Res
end;

In Erlang

60

Thursday, 3 July 14

task(Action) ->
 From = self(),
 Ref = erlang:make_ref(),
 spawn_link(fun() ->
 case (catch Action()) of
 {'EXIT', Why} ->
 From ! {Ref, {error, Why}};
 Reply ->
 From ! {Ref, {ok, Reply}}
 end
 end),
 Ref.

61

Thursday, 3 July 14

wait(Ref) when is_reference(Ref) ->
 receive
 {Ref, {error, Why}} -> error(Why);
 {Ref, {ok, Reply}} -> Reply
 end.

62

Thursday, 3 July 14

We can implement tasks
in about 15 LOC

63

Thursday, 3 July 14

Can we expect someone with 2
weeks of Erlang experience to

write this code?

64

Thursday, 3 July 14

The Erlang Gap

65

Thursday, 3 July 14

Lower The Barriers

66

Thursday, 3 July 14

Lower The Barriers

• My First Erlang Program

• should take 10 minutes from Erlang install
to success

• recommended tutorials, videos, and
downloads to point the way

67

Thursday, 3 July 14

Lower The Barriers

• Error messages should be aimed at
humans, not file:consult/1

• {error, enoent} is cool, but which file?

• (Maybe include lager by default?)

68

Thursday, 3 July 14

Lower The Barriers

• Provide modern abstractions

• such as Clojure’s get_in, assoc_in,
update_in

• built-in implementations of things such as
agents, tasks, (reactive APIs, etc…)

69

Thursday, 3 July 14

Lower The Barriers

70

Think like a newcomer

Thursday, 3 July 14

Lower The Barriers

71

Thursday, 3 July 14

Lower The Barriers

Share the Love

71

Thursday, 3 July 14

