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We Have A Problem

• We are sitting on the solution to many of 
today's problems

•  We've had these solutions for 15 years 

•  Yet we are still marginal
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Why?
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Dear Abbey…
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I keep trying to apply Elixir/Erlang to problems I 
have, and I keep running up against issues with the 
terrible state of the ecosystem. Whatever the Erlang 
devs have been up to for the last 25 years, it certainly 
wasn't focusing on being a citizen of the modern 
internet.

I've killed many, many hours deciphering bad 
documentation and fighting bugs in XML and HTTP 
libraries over the past several weeks. Most recently I 
thought I had an idea which would be a perfect 
application of Elixir/Erlang, and then discovered that 
its sole IMAP client library is moribund and 
considered unusable by the one person I could find 
who has tried it.

Now, obviously, "the libraries suck" is a bad argument 
against a language - Ruby was in just as bad a state 
back in 2001 when I came to it. But there were 
compelling reasons to want to change that situation. 
In the case of Ruby, the reason was "it's a joy to code 
in".

As I understand it, the compelling reason for Erlang is 
that "it has a great VM for concurrent/distributed 
development".

But here's where I run into a problem. 5 years ago, 
that argument made a ton of sense. But now Clojure 
is a thing, and Go is a thing. Scala too, for that matter. 
Clojure and Scala have the full Java ecosystem behind 
them. Go can call directly into C code, so it has the 
whole C/C++ ecosystem to draw from.

None of them have Erlang's semantic quirks, like its 
obsession with arity. And all of them have Actor/CSP/
Pi Calculus concurrency abstractions baked-in, just 
like Erlang.

Given all this, it seems like the sole reason to invest 
time into Elixir over some of these other languages is 
on the faith that the VM is simply that much better 
than the JVM, or the Go runtime.

At this point, my intuition is screaming at me to ditch 
the Erlang VM and focus my concurrent language 
energy on Clojure and/or Go. I keep worrying that I'll 
fight my way through the ecosystem issues, only to 
find myself with a bunch of code that runs on a VM 
that isn't materially better than the JVM, and can't be 
instrumented and tuned the way the JVM can.
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Not a Random Rant

• We hear it a lot

• From well-known, knowledgeable people
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We Need to Reconcile

we are sitting on the 
solution to many of 
today's problems

"ditch the Erlang VM and focus 
my concurrent language 

energy on Clojure and/or Go”

vs.

8

Thursday, 3 July 14



Why Do We Care?

• We're happy

• We have what we need

• It works for us

• Someone else's problem
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But We Should Care

• For the good of ourselves

• For the long-term survival of our culture.

• More conferences, more companies, more 
jobs, more clever ideas…

• For the good of world!
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We’re Better

• We have the best VM and the best language

• So we don't have to worry about the 
surface features.
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But the barriers to 
entry are too high
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Hmmm… 
Erlang looks 
interesting
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This is harder 
than I thought
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I hate feeling 
stupid
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http://us.cdn281.fansshare.com/photos/keanureeves/keanu-reeves-wallpaper-1469967791.jpg
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http://us.cdn200.fansshare.com/photo/keanureeves/keanu-reeves-83926830.jpg

http://wallpaperhdfree.com/wp-content/uploads/2013/03/Keanu-Reeves-Best-2013-Wallpaper.jpg

I’m happy
 as I was
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And that’s why 
the Matrix
is written 

in Java
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Catalyst Reduces Input
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You Are The Catalyst
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So Let’s Put 
On our 

Outsider 
Hats
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create erlang application
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$ git clone git://github.com/rebar/rebar.git
Cloning into 'rebar'...
Resolving deltas: 100% (3633/3633), done.
$ cd rebar
$ ./bootstrap                                        
Recompile: src/rebar
Recompile: src/rebar_abnfc_compiler
Recompile: src/rebar_app_utils
Recompile: src/rebar_appups
. . .
Recompile: src/rebar_xref
==> rebar (compile)
==> rebar (escriptize)
Congratulations! You now have a self-contained script 
called "rebar" in your current working directory. Place 
this script anywhere in your path and you can use rebar 
to build OTP-compliant apps.
$
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$ ./rebar create-app app-id=my-app
==> rebar (create-app)
Writing src/myapp.app.src
Writing src/myapp_app.erl
Writing src/myapp_sup.erl
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$ ./rebar create-app app-id=my-app
==> rebar (create-app)
Writing src/myapp.app.src
Writing src/myapp_app.erl
Writing src/myapp_sup.erl

31

$ cd my-app  
No such file or directory: my-app
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$ ./rebar create-app app-id=my-app
==> rebar (create-app)
Writing src/myapp.app.src
Writing src/myapp_app.erl
Writing src/myapp_sup.erl

31

$ cd my-app  
No such file or directory: my-app

$ cd src 
$ ls
myapp.app.src! ! !       ! rebar_file_utils.erl
myapp_app.erl! ! !       ! rebar_getopt.erl
myapp_sup.erl! !    !     !rebar_lfe_compiler.erl
rebar.erl!! !            ! rebar_log.erl
rebar_abnfc_compiler.erl! ! rebar_mustache.erl
rebar_app_utils.erl!!   !! rebar_neotoma_compiler.erl
rebar_appups.erl! !       ! rebar_otp_app.erl
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$ ./rebar create-app app-id=my_app
==> MyApp (create-app)
Writing src/my_app.app.src
Writing src/my_app_app.erl
Writing src/my_app_sup.erl

$ ./rebar compile
==> MyApp (compile)
Compiled src/my_app_app.erl
Compiled src/my_app_sup.erl

$ erl -pa ebin -s my_app
Erlang/OTP 17 [RELEASE CANDIDATE 1] [erts-6.0] 
[source] [64-bit] [smp:4:4] [async-threads:10] [hipe]
[kernel-poll:false]

{"init terminating in do_boot",{undef,[{my_app,start,
[],[]},{init,start_it,1,[]},{init,start_em,1,[]}]}}

Crash dump was written to: erl_crash.dump
init terminating in do_boot ()
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$ erl -pa ebin -s my_app
. . .
{"init terminating in do_boot",{undef,[{my_app,start,
[],[]},{init,start_it,1,[]},{init,start_em,1,[]}]}}

Crash dump was written to: erl_crash.dump
init terminating in do_boot ()

• Why are errors displayed as Erlang terms?

• What is the error 

• (remember, I’m new to Erlang)

• What should I do next?
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Erlang user

Ex
te

rn
al

 E
ne

rg
y

Me

34

Thursday, 3 July 14



Erlang user

Ex
te

rn
al

 E
ne

rg
y

Me

34

Thursday, 3 July 14



Erlang user
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Me Me: Happy user of 
something else
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This is just the mechanics

Thinking in Erlang is hard, too…
- Pattern matching
- Recursion
- Higher Order Functions
- Anonymous functions
- Expression-based conditionals (case/if)
- Single Assignment
- Immutability (and the lack for while and for loops)
- Not using objects

(Fred Herbert 2/13/14)
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Nested Data Structures
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#{ 
  RoomId =>
    #room{
      users=#{
        UserId => [Codes]      
      }    
    }
}.
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User joins a room

Rooms#{RoomId}#room.users#{UserId} += [NewCode]
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join_room(#{RoomId := Room} = Rooms,
          RoomId, UserId, NewCode) ->
  Rooms#{RoomId := join_room(Room, UserId, NewCode)}.

join_room(#room{users=Users} = Room, UserId, NewCode) ->
  Room#room{users=join_room(Users, UserId, NewCode)};

join_room(#{UserId := Codes} = Users, UserId, NewCode) ->
  Users#{UserId := join_room(Codes, NewCode)}.

join_room(Codes, NewCode) ->
  [NewCode|Codes].

User joins a room
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Is this the correct 
design?
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Clojure

• get_in

• assoc_in

• update_in
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In Erlang

update_in(Rooms, [RoomId, #room.users, UserId],
          fun(Codes) -> [NewCode|Codes] end)
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Haskell Lenses

https://github.com/jlouis/erl-lenses
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OTP
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I need to do what is 
best for my customer
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OTP is Cool, But…

• High ceremony

• Steep learning curve

• Much duplication

• cut and paste code

• API vs. handler
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Simple Problem

• Need to parse a configuration file and 
access its data throughout the application 
life cycle
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-module(config).

-behaviour(gen_server).

%% API
-export([start_link/0]).

%% gen_server callbacks
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,
         terminate/2, code_change/3]).

-define(SERVER, ?MODULE).

start_link() ->
    gen_server:start_link({local, ?SERVER}, ?MODULE, [], []).

init([]) ->
    {ok, parse_config()}.

handle_call(_Request, _From, State) ->
    Reply = ok,
    {reply, Reply, State}.

handle_cast(_Msg, State) ->
    {noreply, State}.

handle_info(_Info, State) ->
    {noreply, State}.

terminate(_Reason, _State) ->
    ok.

code_change(_OldVsn, State, _Extra) ->
    {ok, State}.

Config Server
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(def config (agent (parse-config)))

(await (send config ...))

@config

Config using Agents
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Futures
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Futures
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(new Future(getUsers))
  .onSuccess(...)
  .onFailure(...)
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Erlang mismatch

• Callback soup

• Conflated error handling
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They want to start a 
computation, asynchronously,
and later read its value back
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task = new Task(action)
// some computation
task.Wait()

.NET Task Parallel Library
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From = self(),
Pid  = spawn_link(fun() ->
         From ! {self(), Action()}
       end),

% some computation

receive
  {Pid,Res} -> Res
end;

In Erlang
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task(Action) ->
  From = self(),
  Ref  = erlang:make_ref(),
  spawn_link(fun() ->
    case (catch Action()) of
      {'EXIT', Why} ->
        From ! {Ref, {error, Why}};
      Reply ->
        From ! {Ref, {ok, Reply}}
    end
  end),
  Ref.
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wait(Ref) when is_reference(Ref) ->
  receive
    {Ref, {error, Why}} -> error(Why);
    {Ref, {ok, Reply}}  -> Reply
  end.
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We can implement tasks
in about 15 LOC
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Can we expect someone with 2 
weeks of Erlang experience to 

write this code?
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The Erlang Gap

65

Thursday, 3 July 14



Lower The Barriers
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Lower The Barriers

• My First Erlang Program

• should take 10 minutes from Erlang install 
to success

• recommended tutorials, videos, and 
downloads to point the way
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Lower The Barriers

• Error messages should be aimed at 
humans, not file:consult/1

• {error, enoent} is cool, but which file?

• (Maybe include lager by default?)
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Lower The Barriers

• Provide modern abstractions

• such as Clojure’s get_in, assoc_in, 
update_in

• built-in implementations of things such as 
agents, tasks, (reactive APIs, etc…)
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Lower The Barriers
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Think like a newcomer
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Lower The Barriers
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Lower The Barriers

Share the Love
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