
Porting Erlang/OTP to Exotic
Platforms 
 
Tips, tricks, and having some fun along the way

Brett Cameron 
March 2015

‹#›

Abstract
Over the past 6-7 years the speaker has had cause (sometimes self-inflicted) to port Erlang/OTP to several exotic and some not-so-exotic
operating system platforms, including OpenVMS and several UNIX variants such as Tru64, HP-UX (Itanium), and AIX. In this talk, the speaker
will discuss the general process of building Erlang/OTP from source and some of the challenges that are commonly encountered when
porting Erlang/OTP to new platforms. These challenges range from trivial matters such dealing with minor differences between C runtime
library and header file implementations on different platforms through to dealing with somewhat more complicated and problematical areas
such as threading, SMP support, and various processor, operating system, and file system peculiarities. Specific issues will be considered,
and solutions will be presented. In addition to porting Erlang/OTP to the new platform, for anything but the most trivial of cases some work
will generally also be required to port Erlang/OTP applications to the new platform. Many Erlang/OTP applications include C/C++ driver
code that must also be ported, and porting this code can sometimes prove almost as problematical as porting Erlang/OTP itself. Additionally,
Erlang/OTP application code may contain operating-specific functionality. Some of the challenges faced when porting large and complex
Erlang/OTP applications such as Riak, CouchDB, and RabbitMQ will be considered. The speaker will also briefly discuss future plans for
Erlang/OTP on the OpenVMS platform.

‹#›

About me
Brett Cameron works as a senior software engineer at VMS Software Inc.
(VSI, http://www.vmssoftware.com/index.html), helping to define and
implement the company’s Open Source strategy for the OpenVMS operating
system. Before joining VSI Brett worked as a senior software architect with
HP’s Cloud and Enterprise Services groups. Brett lives in Christchurch, New
Zealand and has worked in the software industry since 1992, and in that
time he has gained experience in a wide range of technologies, many of
which have long since been retired to the software scrapheap of dubious
ideas. Over the past decade Brett has spent considerable time travelling the
world helping organisations to modernize their legacy application
environments and to better leverage Open Source technologies. In more
recent times, his involvement with various Open Source projects and his
work in the cloud computing space has caused him to develop a liking for
functional programming languages, and Erlang in particular, which he has
ported to several operating systems, including OpenVMS. Brett holds a
doctorate in chemical physics from the University of Canterbury, and
maintains close links with the University, delivering guest lectures and
acting as an advisor to the Computer Science and Electronic and Computer
Engineering departments on course structure and content. In his spare time
Brett enjoys listening to music, playing the guitar, and drinking beer.

http://www.vmssoftware.com/index.html

AGENDA
• Introduction
• Existing implementations and ports
• Building Erlang from source - a quick refresher
• Porting Erlang to a new platform
• Porting complex Erlang applications
• Some results
• Summary/conclusions
• Questions

‹#›

VMS Software, Inc. (VSI)
• Formed (formerly announced) 31st of July 2014

– http://www.vmssoftware.com
– Headquartered in Bolton, MA
– Founded by the investors and principals of Nemonix Engineering (http://nemonix.com/)
– Still ramping up
▪ Currently ~35 staff, looking to have ~70 towards end of 2015

• License agreement with HP to develop, sell and support the OpenVMS operating system and layered products

• Sole developer of future versions of OpenVMS
– Big ticket item is porting the operating system to x86
– Other key items on the roadmap include:

• Making more Open Source technologies available (and supported)
• Improved UNIX/Linux compatibility

© Gerrit Woertman

http://www.vmssoftware.com/
http://nemonix.com/
http://nemonix.com/

‹#›

OpenVMS?
• A server operating system that runs on VAX, Alpha, and Intel Itanium processors (and soon x86)
• Originally developed by Digital Equipment Corporation (DEC)
• Proprietary

– Not at all UNIX/Linux-like
• Unmatched security, stability, and legendary uptime performance (only 38 vulnerabilities in 37 years)
• Substantial and loyal installed base of over 300,000 systems supporting millions of users
• Used for numerous purposes across all sectors

– Mail and other network services
– Manufacturing
– Transportation control and monitoring
– Banking and financial services
– Many large stock exchanges still run OpenVMS
– Heath care
– Telco
– Government
– Military
– Chip manufacturers
– ...

‹#›

1980 1990 20102000

1977 Digital
Equipment

Corporation (DEC)
releases the first
version of VMS

1998 DEC purchased
by Compaq

2002 Compaq
purchased by

HP

Last major version of
HP OpenVMS (V8.4)

released in 2010

5 June 2013 HP
announces plans to
effectively end-of-life

OpenVMS

31 July 2014 VSI
is formed

On June 5 2013 HP announced what effectively amounted to the end-of-life of the OpenVMS
operating system. Various levels of support would be provided through until 2020; however there
would be no new versions of the operating system, and the operating system would not be
supported on new hardware. This initial announcement was subsequently revised to extend some
support dates; but the fact remained that the operating system was to all extents and purposes
going end-of-life. Thanks to the incredible determination and hard work of several people, VSI
was created to take over the ongoing development and support of OpenVMS and its layered
products.

OpenVMS short history

VSI plans to take OpenVMS into the future, porting the operating system to additional processor architectures,
enhancing UNIX compatibility, and ensuring that Open Source technologies (such as Erlang) can be more

readily ported to and fully utilized on the platform.

AGENDA
• Introduction
• Existing implementations and ports
• Building Erlang from source - a quick refresher
• Porting Erlang to a new platform
• Porting complex Erlang applications
• Some results
• Summary/conclusions
• Questions

‹#›

Existing implementations and ports of Erlang
• From Erlang solutions (https://www.erlang-solutions.com/downloads/download-erlang-otp)...
‒ Linux

o Ubuntu, CentOS, Debian, Fedora, Raspbian
‒ Mac OS X
‒ Current versions of Windows (32-bit and 64-bit)

• Ericsson and Erlang Solutions have also built Erlang on a few other platforms
‒ Solaris (including 64 bit)
‒ FreeBSD
‒ Tru64
‒ Older versions of Windows
‒ VxWorks and OSE real-time operating systems

• Builds for various other platforms have been reported…
‒ QNX RTOS
‒ IRIX
‒ Assorted embedded devices running some variant of Linux
‒ ...
‒ Pretty much so long as you've got gcc and friends and enough compute resources, you should be able to build and

run Erlang/OTP on anything that pretty much resembles Linux/UNIX

https://www.erlang-solutions.com/downloads/download-erlang-otp
https://www.erlang-solutions.com/downloads/download-erlang-otp
https://www.erlang-solutions.com/downloads/download-erlang-otp
https://www.erlang-solutions.com/downloads/download-erlang-otp

‹#›

Some ports that I’ve been involved with
• AIX
‒ This is going back a few years now
‒ Ported for a RabbitMQ proof-of-concept for a (large)

prospective customer
‒ Used gcc et al as opposed to IBM AIX compiler suite
‒ Sufficient to run RabbitMQ
‒ Some rough edges

o Terminal I/O
o Branching in OTP based on return value of os:type()
o No HiPE support

• HP-UX (Itanium)
‒ Several HP teams were contemplating using RabbitMQ

but wanted it on HP-UX
‒ Fairly straightforward to get something working using

gcc et al
‒ Some issues encountered with threads, SMP, and in OTP

o Will discuss some of these thing later

• Compaq Tru64
‒ I was bored one evening
‒ Similar results to HP-UX, although probably less

issues overall

• HP OpenVMS (Alpha and Itanium)
‒ Wanted an AMQP implementation for OpenVMS

o RabbitMQ looked like the best option, but it
requires Erlang

o A friend/colleague dared me to try porting Erlang
to OpenVMS

‒ Numerous challenges
o OpenVMS is not at all Linux/UNIX-like (although

this can be fudged to some extent)
o Probably on a par with porting Erlang to Windows

‒ More on all of this later

• … and a couple of others

AGENDA
• Introduction
• Existing implementations and ports
• Building Erlang from source - a quick refresher
• Porting Erlang to a new platform
• Porting complex Erlang applications
• Some results
• Summary/conclusions
• Questions

‹#›

Building Erlang from source

$ sudo apt-get install build-essential
$ wget https://packages.erlang-solutions.com/erlang/esl-erlang-src/otp_src_17.1.tar.gz
$ gunzip otp_src_17.1.tar.gz
$ tar xvf otp_src_17.1.tar
$ cd otp_src_17.1
$./configure
$ make
$ sudo make install

Okay, well that was easy enough…

Let’s look at the ./configure step in a
bit more detail…

• Let's say we want to build Erlang/OTP from source on an Ubuntu Linux server...

‹#›

Building Erlang from source

********************** APPLICATIONS DISABLED **********************

jinterface : No Java compiler found
odbc : ODBC library - link check failed

********************** APPLICATIONS INFORMATION *******************

wx : wxWidgets not found, wx will NOT be usable

********************** DOCUMENTATION INFORMATION ******************

documentation :
 xsltproc is missing.
 fop is missing.
 xmllint is missing.
 The documentation can not be built.

• When I ran ./configure on my server, it
gurgled away for a while checking various
aspects of the environment and completed
successfully with this output

• This is telling me which bits of Erlang/OTP will
not be built because certain prerequisites are
not installed

• If these components are required, it is just a
matter of installing the relevant packages and
re-running ./configure

• But ./configure also allows you to specify
how you want Erlang to be built
– Which components to include in the build

and which to exclude
– Enable or disable certain Erlang features
– Installation directories
– Compiler and linker flags
– ...

‹#›

Building Erlang from source - options
$./configure --help

• The above command lists the myriad of build options that are available

‒ There are quite a few…

More on this topic later

///ppt/slides/configure-help.pdf
///ppt/slides/configure-help.pdf

‹#›

The config.h file
• Running ./configure generates a variety of bits and pieces required for the subsequent build (make)

• One of the more important files generated by ./configure is config.h

– This file is included by pretty much every C file
o Deals with many of the platform-dependent bits and pieces
• Header file differences
• C RTL differences
• …

o Controls (to some extent) how things get built, what functionality is compiled in, ...

• Here's an example config.h (in this case generated on Ubuntu)

• When porting Erlang/OTP to a not particularly POSIX-like environment (such that you cannot do a ./configure) it will
be necessary to manually create an appropriate config.h or to modify one generated for another platform

– Requires good knowledge of the C RTL
– … more on this later

///ppt/slides/config-h.pdf

AGENDA
• Introduction
• Existing implementations and ports
• Building Erlang from source - a quick refresher
• Porting Erlang to a new platform
• Porting complex Erlang applications
• Some results
• Summary/conclusions
• Questions

‹#›

The scale of the problem
• Appreciable (and generally quite complex) codebase

– Some 500,000 lines of C code
– Approximately 2,300,000 lines of Erlang code (including test suites) across ~4000 files
– Sundry other files
▪ Makefiles
▪ Test scripts
▪ …

‹#›

Main components to be ported
• Executables

‒ beam, beam.smp
‒ child_setup

‒ epmd

‒ erlc

‒ erlexec (run by the erl command)
‒ escript

‒ heart

‒ inet_gethost

‒ And a few other items (dialyzer, …)

• A few (~10) shared libraries

‒ Number of shared libraries depends on the
selected build options
▪ Can also be somewhat platform-dependent

‒ ODBC interface

‒ WxWidgets

‒ ASN1

‒ Tracing

‒ OpenSSL/crypto interface

‒ ...

Not surprisingly, beam is generally the most challenging component to port; however other
bits and pieces are not without their challenges.

‹#›

Good news and bad news
• Code and build environment are (mostly) POSIX-compliant

– Fairly standard C code
– Usual sort of build tools/environment
– But what if you don’t have a particularly POSIX-like environment?

• Also need to consider the OTP code
– It’s not just a matter of building the executables listed on the previous slide

So there’s certainly some work to do, but it’s possibly not as bad
as might initially have been thought…

‹#›

Typical issues and challenges
• Configuration options

– Which options to use?
– What if you can't do a ./configure; make? What the ...?!

• C code
– Common problem areas include (but are not necessarily limited to)…
o Threads
o SMP
o I/O and polling
o Terminal I/O
o Sockets
o Anomalies (“bugs”)

• OTP code
– os:type(), os:cmd()

Let’s look at a few examples…

‹#›

Remember the configure script?
$./configure --help

• Some of the more important options to consider when porting Erlang to a new platform tend to be as follows (and probably a few
others):

• When porting to a new platform (particularly a not-very-POSIX-like environment) it may be necessary for the initial build to
perform the ./configure step and potentially some build steps in another (supported) environment
– While the supported environment might support certain features, the final target environment may not and it is therefore

important to ./configure accordingly
– Additionally, it is advisable to try to keep things as simple as possible for an initial port; additional features can be added in

later once a basic port is working

--enable-threads, --disable-threads Enable/disable asynchronous thread support

--enable-smp-support, --disable-smp-support Enable/disable SMP support

--enable-kernel-poll, --disable-kernel-poll Enable/disable use of kernel poll

--enable-sctp, --disable-sctp Enable/disable inclusion of SCTP support

--enable-hipe, --disable-hipe Enable/disable inclusion of HiPE functionality

--with-javac, --without-javac With or without the Java interface

--with-termcap, --without-termcap With or without termcap libraries

--with-ssl, --without-ssl With or without SSL/TLS support

--without-wx Without WxWidgets

--without-odbc Without ODBC support (requires unixODBC, http://
www.unixodbc.org/)

http://www.unixodbc.org/

‹#›

Some examples…
AIX

• Reasonably straightforward, assuming that GNU make, gcc and friends are available

– Really do need GNU make

– Most other make implementations (such as those that come out of the box with AIX and HP-UX) will not suffice

• Left out some of the tricky stuff for the initial build
• Using the AIX linker, so needed to tweak a few of the linker flags, particularly for building shared libraries

– Use "-Wl,-bexpall,-brtl" instead of "-Wl,-export-dynamic"

– Use "DED_LDFLAGS = -G -bexapall –brtl" instead of "DED_LDFLAGS = -shared"

OpenVMS

• Initial ./configure was done on an Ubuntu server

– Don't have (good) Bash shell or autoconf and friends on OpenVMS

– More on this shortly…
• Don't bother with features that OpenVMS simply cannot handle (kernel poll, SCTP) and features that will be problematical (SMP, HiPE)
• Feeling brave by enabling asynchronous thread support
• SSL is easy to add in later

– Subsequently also added in termcap support and currently working on SMP

$./configure --disable-smp-support --without-wx --without-javac --without-ssl --disable-megaco-reentrant-flex-scanner --disable-hipe

$./configure --enable-threads --disable-smp-support --disable-kernel-poll --disable-sctp --disable-hipe --without-termcap \

--without-javac --without-ssl

‹#›

For the record…
• There are something like 900+ unique macros in the C code used in #ifdef-type pre-processor statements to address

platform differences and to control what gets compiled
• The values of many of the macros are determined by other high-level (configuration) macros
• But the fact remains that there are a lot of options and inter-dependencies that can cause fun and entertainment

when porting the code to a new environment

‹#›

SMP and CPU topology
• Erlang beam.smp determines CPU topology automatically at start-up

– See erts_cpu_info_update() and other functions in erl_misc_utils.c

• In most cases (including OpenVMS) details regarding the number of cores configured and active can be determined via calls to
sysconf() similar to the following:
#ifdef _SC_NPROCESSORS_CONF
 configured = (int) sysconf(_SC_NPROCESSORS_CONF);
 if (configured < 0)
 configured = 0;
#endif
#ifdef _SC_NPROCESSORS_ONLN
 online = (int) sysconf(_SC_NPROCESSORS_ONLN);
 if (online < 0)
 online = 0;
#endif

#if defined(hpux) || defined(__hpux) || defined(_hpux)
include <sys/pstat.h>
#elif...
.
.
.
#if defined(hpux) || defined(__hpux) || defined(_hpux)
 struct pst_dynamic psd;
#elif ...
.
.
.
#if defined(hpux) || defined(__hpux) || defined(_hpux)
 pstat_getdynamic(&psd, sizeof(psd), (size_t)1, 0);
 online = psd.psd_proc_cnt;
 configured = psd.psd_active_cores;
#elif ...

But on HP-UX things are a
little different...

‹#›

Threads

• Schedulers
– Semi-autonomous beam VM
– One per VM thread

• By default one VM thread per core
– Contains its own run-queue

• Run-queue contains things to be done
– Run as separately as possible

• Reduce nasties like locks/synchronisation

• Asynchronous thread pool
– File I/O is done in the scheduler thread

• It can take time
• Blocks the scheduler while waiting

– Using the asynchronous threads moves I/O operations
out of the scheduler thread
• Scheduler thread now no longer waits for file I/O

– File I/O will automatically use them if created
– Linked-in port drivers can use them if they exist
– Inet driver never uses them

Firstly, some key points from Robert Virdings's excellent 2013 Erlang Factory  
talk "Hitchhiker’s Tour of the beam":

‹#›

Threads
• For the most part no problems from a portability perspective (so long as you've got a decent POSIX

threads library)
• Some typical issues include:

– Missing functions
– Thread stack size

http://www.reddit.com/r/aww/comments/2oagj8/
multithreaded_programming_theory_and_practice/

‹#›

Threads – missing functions
• The main one here tends to be pthread_sigmask()

• To quote the Linux Programmers Manual:
“The pthread_sigmask() function is just like sigprocmask(2), with the difference that its use in multithreaded
programs is explicitly specified by POSIX.1-2001”

• However on most platforms sigprocmask() is thread-safe and we can get away with the following sort of thing:

#ifdef __VMS
 return sigprocmask(how, set, oset); /* Fingers and toes crossed */
#else
 return pthread_sigmask(how, set, oset);
#endif

‹#›

Threads – per-thread stack size

• Consider the following program that displays per-thread
stack size:

• Running this code on various platforms yields the
following results (assuming default rlimit settings):
– Ubuntu 14.04, 8388608 bytes
– Cygwin (64-bit), 1036288 bytes
– OpenVMS, 40776 bytes (!)

• Whoa; that's possibly just a bit small... but as it
turns out, not by that much

• Thread creation in beam is handled by the function
ethr_thr_create() in ethread.c, which starts as follows:

• This essentially tells us that we can fix the thread stack size
problem by defining the macro
ETHR_MODIFIED_DEFAULT_STACK_SIZE in config.h to an
appropriate value

• After a bit of trial and error it was found that 64K is enough
on OpenVMS

Initially the SMP build of beam on OpenVMS would not even start, claiming it was out of stack
space…

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{
 pthread_attr_t attr;
 size_t stacksize;

 pthread_attr_init(&attr);
 pthread_attr_getstacksize(&attr, &stacksize);
 printf("%zd\n", stacksize);
 pthread_attr_destroy(&attr);
 return 0;
}

int
ethr_thr_create(ethr_tid *tid, void * (*func)(void *), void *arg,
 ethr_thr_opts *opts)
{
 ethr_thr_wrap_data__ twd;
 pthread_attr_t attr;
 int res, dres;
 int use_stack_size = (opts && opts->suggested_stack_size >= 0
 ? opts->suggested_stack_size
 : -1 /* Use system default */);

#ifdef ETHR_MODIFIED_DEFAULT_STACK_SIZE
 if (use_stack_size < 0)
 use_stack_size = ETHR_MODIFIED_DEFAULT_STACK_SIZE;
#endif
.
.
.

‹#›

Polling
• Descriptors of various types are polled using select() and poll()

– Can optionally use kernel poll, if it’s available

• Toggling between blocking and non-blocking
– Can't use fcntl() on some platforms (OpenVMS, AIX, Windows) to toggle sockets or file descriptors blocking/non-

blocking
– Need to use ioctl() instead (or the Winsock equivalent thereof)
– Erlang VM code knows about this

• Need to ensure the SET_BLOCKING() and SET_NONBLOCKING() macros are correctly defined for the new platform
in the sys.h header file

• On OpenVMS select() and poll() (currently) only work on sockets
– But beam polls sockets, pipes, and potentially any other sort of descriptor
– Need to implement our own versions of select() and poll() to handle this

• Bit of a grubby hack
• Performance implications
• Generally not ideal

‹#›

Use of os:type() and os:cmd() in OTP
• There are a significant number of os:type() and os:cmd() calls in the OTP library code

– When porting Erlang/OTP to a new platform it is important to check these calls to determine
whether any changes are required in order to accommodate the new platform and/or to avoid
strange errors

– Easy enough to find
– Generally straightforward to fix for UNIX/Linux-like systems
– May be somewhat more problematical to address for more exotic (non-Linux/UNIX) platforms

Let’s look at a couple of examples...

‹#›

Use of os:type() and os:cmd() in OTP
init([]) ->
 process_flag(trap_exit, true),
 process_flag(priority, low),

 OS = os:type(),
 PortMode = case OS of
 {unix, darwin} -> false;
 {unix, freebsd} -> false;
 {unix, dragonfly} -> false;
 % Linux supports this.
 {unix, linux} -> true;
 {unix, openbsd} -> true;
 {unix, netbsd} -> true;
 {unix, irix64} -> true;
 {unix, irix} -> true;
 {unix, sunos} -> true;
 {unix, hpux} -> true;
 {win32, _OSname} -> false;
 _ ->
 exit({unsupported_os, OS})
 end,
 Pid = if
 PortMode ->
 spawn_link(fun() -> port_init() end);
 not PortMode ->
 undefined
 end,
 ...

• See lib/os_mon/src/memsup.erl

• Initialization of system and process memory
monitoring
– Monitoring will fail to start on unsupported

platforms
• Straightforward to add in support for HP-UX

– A couple more similar changes are required
elsewhere in this file

‹#›

Use of os:type() and os:cmd() in OTP
%%--Check disk space--

check_disk_space({win32,_}, not_used, Threshold) ->
 Result = os_mon_sysinfo:get_disk_info(),
 check_disks_win32(Result, Threshold);
check_disk_space({unix, solaris}, Port, Threshold) ->
 Result = my_cmd("/usr/bin/df -lk", Port),
 check_disks_solaris(skip_to_eol(Result), Threshold);
check_disk_space({unix, irix}, Port, Threshold) ->
 Result = my_cmd("/usr/sbin/df -lk",Port),
 check_disks_irix(skip_to_eol(Result), Threshold);
check_disk_space({unix, linux}, Port, Threshold) ->
 Result = my_cmd("/bin/df -lk", Port),
 check_disks_solaris(skip_to_eol(Result), Threshold);
check_disk_space({unix, hpux}, Port, Threshold) ->
 Result = my_cmd("/usr/bin/df -l -k -P", Port),
 check_disks_solaris(skip_to_eol(Result), Threshold);
check_disk_space({unix, dragonfly}, Port, Threshold) ->
 Result = my_cmd("/bin/df -k -t ufs,hammer", Port),
 check_disks_solaris(skip_to_eol(Result), Threshold);
check_disk_space({unix, freebsd}, Port, Threshold) ->
 Result = my_cmd("/bin/df -k -l", Port),
 check_disks_solaris(skip_to_eol(Result), Threshold);
check_disk_space({unix, openbsd}, Port, Threshold) ->
 Result = my_cmd("/bin/df -k -l", Port),
 check_disks_solaris(skip_to_eol(Result), Threshold);
check_disk_space({unix, netbsd}, Port, Threshold) ->
 Result = my_cmd("/bin/df -k -t ffs", Port),
 check_disks_solaris(skip_to_eol(Result), Threshold);
check_disk_space({unix, sunos4}, Port, Threshold) ->
 Result = my_cmd("df", Port),
 check_disks_solaris(skip_to_eol(Result), Threshold);
check_disk_space({unix, darwin}, Port, Threshold) ->
 Result = my_cmd("/bin/df -i -k -t ufs,hfs", Port),
 check_disks_susv3(skip_to_eol(Result), Threshold).

• See lib/os_mon/src/disksup.erl

• The function check_disk_space() determines
disk space by issuing a potentially platform-
dependent command

• Straightforward to add in support for HP-UX
• Note that things are done quite differently for

Windows
– A port program (part of the Erlang/OTP

distribution for Windows) is used
– A similar solution might be required for other

non-UNIX-like platforms
– On OpenVMS spawning a sub-process to run a

command is not very efficient and it might
therefore be preferable to implement a port
program that performs system calls to
determine the required information

‹#›

Operating system flavour
• os:type() returns the operating system family and flavour

– For example {unix,linux}, or {win32,nt}

• The operating system flavour is determined by the function
os_flavor() in sys.c via a call to uname()

 

• On HP-UX this returns hp-ux
– But that little hyphen creates a bit of a problem
– Remember all that code in the OTP libraries that checks

the return value of os:type()

• That code expects the flavour to be represented as an
atom and atoms cannot contain hyphens

• Enclosing in single quotes does not help in most places
– The simplest solution is probably a bit of a grubby hack

along the following lines…  

void
os_flavor(char* namebuf,
 unsigned size)
{
 struct utsname uts;
 char* s;

 (void) uname(&uts);
 for (s = uts.sysname; *s; s++) {
 if (isupper((int) *s)) {
 *s = tolower((int) *s);
 }
 }
 strcpy(namebuf, uts.sysname);
}

void
os_flavor(char* namebuf,
 unsigned size)
{
 struct utsname uts;
 char* s;

#if defined(hpux) || defined(__hpux) || defined(_hpux)
 strcpy(namebuf, "hpux");
#else
 (void) uname(&uts);
 for (s = uts.sysname; *s; s++) {
 if (isupper((int) *s)) {
 *s = tolower((int) *s);
 }
 }
 strcpy(namebuf, uts.sysname);
#endif
}

‹#›

Porting sometimes uncovers little anomalies…
What is wrong with the following piece of code (erl_mmap.c)?

Well okay, not much really, but it probably should be as
follows:

#if HAVE_MMAP
define ERTS_MMAP_PROT (PROT_READ|PROT_WRITE)
if defined(MAP_ANONYMOUS)
define ERTS_MMAP_FLAGS (MAP_ANON|MAP_PRIVATE)
define ERTS_MMAP_FD (-1)
elif defined(MAP_ANON)
define ERTS_MMAP_FLAGS (MAP_ANON|MAP_PRIVATE)
define ERTS_MMAP_FD (-1)
else
define ERTS_MMAP_FLAGS (MAP_PRIVATE)
define ERTS_MMAP_FD mmap_state.mmap_fd
endif
#endif

#if HAVE_MMAP
define ERTS_MMAP_PROT (PROT_READ|PROT_WRITE)
if defined(MAP_ANONYMOUS)
define ERTS_MMAP_FLAGS (MAP_ANONYMOUS|MAP_PRIVATE)
define ERTS_MMAP_FD (-1)
elif defined(MAP_ANON)
define ERTS_MMAP_FLAGS (MAP_ANON|MAP_PRIVATE)
define ERTS_MMAP_FD (-1)
else
define ERTS_MMAP_FLAGS (MAP_PRIVATE)
define ERTS_MMAP_FD mmap_state.mmap_fd
endif
#endif

• Most UNIX/Linux systems define both MAP_ANON and
MAP_ANONYMOUS
– However HP-UX does not

• Possibly a better solution would be to allow for
either macro

• Various macros like _POSIX_SOURCE, _BSD_SOURCE,
_SVID_SOURCE, and _GNU_SOURCE can also have a
bearing on these sorts of things

‹#›

Crazy (frustrating) stuff…
• Things appeared to be working pretty well on OpenVMS, but with the SMP build the Erlang VM seemed to be taking a

disproportionate time to start...
• And even when not doing anything but sitting at the shell prompt strange things are observed....

• Well that can't be good... what's going on?!

• Profiling the code revealed that beam was spending pretty much all of its time in the function erts_sys_main_thread() in
sys.c

– This function doesn't really do too much
– It basically just twiddles its thumbs in a while-loop waiting for a signal to arrive
– Twiddling of thumbs is achieved via the call select(0, NULL, NULL, NULL, NULL); a common way of implementing a

thread-safe and interruptible sleep
– Unfortunately this doesn't work on OpenVMS

• The call returns immediately, causing the code to spin on the enclosing while-loop
• Easily fixed by specifying an (effectively) infinite time value
• But fun to track down…

‹#›

One or two other portability issues…
• Use of fork()

– Not available on some platforms
– Only a small number of fork() calls in the Erlang code
– Basically just fork()/exec() sequences that start other processes
– Can typically substitute vfork()/exec()

• File system differences
– Not all file systems are created equal
– Hierarchical or non-hierarchical
– Different naming conventions
o Different path separators
o Mixed-case support (or the lack thereof)
o Permitted characters
o ...

– Can be a major problem area when porting, particularly if no POSIX support is available

‹#›

HiPE
• High Performance Erlang
• A "just-in-time" native code compiler for Erlang

– Originally only SPARC and x86
– A few other processor architectures are now supported

• Originally started around 1998 as a project at Uppsala University
• Fully integrated into Erlang/OTP since late 2001
• Ongoing research and development

– Work with LLVM is particularly interesting (see http://www.erlang-factory.com/upload/presentations/519/
erllvm.pdf)

• See http://www.it.uu.se/research/group/hipe/, http://www.slideshare.net/didip/high-performance-Erlang, and
elsewhere for more information

• Bottom line:
– If the platform you’re porting Erlang/OTP to uses one of the currently supported processor  

types, HiPE might work
– Otherwise, if you really want HiPE then you’ll need  

to learn some assembler

http://www.erlang-factory.com/upload/presentations/519/erllvm.pdf
http://www.it.uu.se/research/group/hipe/
http://www.slideshare.net/didip/high-performance-Erlang

‹#›

Don’t panic!
What if you don’t have a particularly POSIX-like environment?
• No make, gcc, m4, sed, autoconf, binutils, ...
• My usual approach is to build Erlang on some other supported platform (such as Linux) and to capture a log of the output of the

build process
– Need to be sure to choose appropriate ./configure options

• Carefully examine the config.h file created by the ./configure step and modify it as appropriate for the target platform
• Convert the commands in the build log into an equivalent set of commands for the target platform

– Keep the build procedure brain-dead simple (initially at least)
o Easier to see what's going on
o Can enhance it later

– Systematically resolve compiler errors, compiler options, sort out include paths, linker options...
– Incremental
– Can be a bit of trial and error

• Identify and resolve platform differences (some of which are discussed on other slides)
– C RTL
– OTP libraries

• Cross fingers
• Test, rework, test, rework, …

AGENDA
• Introduction
• Existing implementations and ports
• Building Erlang from source - a quick refresher
• Porting Erlang to a new platform
• Porting complex Erlang applications
• Some results
• Summary/conclusions
• Questions

‹#›

Typical problem areas
• Use of os:type(), os:cmd()

– Use of operating system-specific commands
– Subtle (and not so subtle) syntactical differences across UNIX/Linux implementations
– Need to search code for these sorts of things and potentially modify code for the new platform

• Native Implemented Function (NIF's) and ports
– Not all C/C++ code is created equal
– Compiler differences
– Building shared libraries (linker differences)
– RTL and header file differnces
– Other nasty stuff

• Inline assembler
• Other platform-specific code
• ...

• Command procedures and environment variables

Many of the issues encountered when porting large and/
or complex Erlang applications to new platforms are

(perhaps not surprisingly) similar to those encountered
when porting Erlang itself.

‹#›

RabbitMQ
• http://www.rabbitmq.com
• 100% Erlang – no NIF’s
• But…

– Uses os:cmd() for various purposes

▪ Determining how much memory RabbitMQ can use (if this is not explicitly set)

▪ Determining and monitoring disk space
– For example:

• Even commands like df can have slightly different syntax across UNIX/Linux implementations

• And there is no df command at all on OpenVMS

– … unless you're using GNV (GNU's Not VMS), but that's another story

get_disk_free(Dir) ->
 get_disk_free(Dir, os:type()).

get_disk_free(Dir, {unix, Sun})
 when Sun =:= sunos; Sun =:= sunos4; Sun =:= solaris ->
 parse_free_unix(rabbit_misc:os_cmd("/usr/bin/df -k " ++ Dir));
%% Assumes queues stored under rabbitmq$root
get_disk_free(_Dir, {unix, openvms}) ->
 vms:freeblocks("rabbitmq$root") * 512;
get_disk_free(Dir, {unix, _}) ->
 parse_free_unix(rabbit_misc:os_cmd("/bin/df -kP " ++ Dir));
get_disk_free(Dir, {win32, _}) ->
 parse_free_win32(rabbit_misc:os_cmd("dir /-C /W \"" ++ Dir ++ "\"")).

Note that in this example, the function for OpenVMS
uses a NIF to determine available disk space at the

specified location. Implementing a NIF was just as easy
as parsing the output of the OpenVMS equivalent of the

df command, and somewhat more elegant!

http://www.rabbitmq.com/

‹#›

RabbitMQ – determining total memory
.
.
.
get_total_memory({unix,openvms}) ->
 PageSize = list_to_integer(os:cmd("write sys$output F$GETSYI(\"MEMSIZE\")") -- "\n"),
 PageCount = list_to_integer(os:cmd("write sys$output F$GETSYI(\"PAGE_SIZE\")") -- "\n"),
 PageCount * PageSize;
.
.
.
get_total_memory({win32,_OSname}) ->
 [Result|_] = os_mon_sysinfo:get_mem_info(),
 {ok, [_MemLoad, TotPhys, _AvailPhys, _TotPage, _AvailPage, _TotV, _AvailV],
 _RestStr} =
 io_lib:fread("~d~d~d~d~d~d~d", Result),
 TotPhys;

get_total_memory({unix, linux}) ->
 File = read_proc_file("/proc/meminfo"),
 Lines = string:tokens(File, "\n"),
 Dict = dict:from_list(lists:map(fun parse_line_linux/1, Lines)),
 dict:fetch('MemTotal', Dict);

get_total_memory({unix, sunos}) ->
 File = cmd("/usr/sbin/prtconf"),
 Lines = string:tokens(File, "\n"),
 Dict = dict:from_list(lists:map(fun parse_line_sunos/1, Lines)),
 dict:fetch('Memory size', Dict);

get_total_memory({unix, aix}) ->
 File = cmd("/usr/bin/vmstat -v"),
 Lines = string:tokens(File, "\n"),
 Dict = dict:from_list(lists:map(fun parse_line_aix/1, Lines)),
 dict:fetch('memory pages', Dict) * 4096;

get_total_memory(_OsType) ->
 unknown.

Maybe Erlang/OTP should enhance
built-in support for some of these
more common operating system

interactions…

• In this case we're parsing the output of
the OpenVMS l ex i ca l f unc t i on f
$getsyi() to determine available
memory

• The return value of each call to f
$getsyi() is a single integer value, so
not much parsing is required

• But spawning sub-processes to do this sort
of thing is not really very efficient…

‹#›

Riak
• Not 100% Erlang
• SpiderMonkey JavaScript engine

– https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
– Used to be quite straightforward to port (going back a few years)
– Recently updated and enhanced...

▪ Now a bit more challenging to port ☹
• LevelDB and Bitcask backends

– Bitcask backend is fairly vanilla C code and straightforward to port
– LevelDB code is particularly evil... or possibly I'm just allergic to C++

▪ Heavily optimized (understandably)
– Test suite able to totally swamp an old HP rx2660 (CPU and I/O) running OpenVMS

▪ Atomic operations
– Code for this stuff tends to be quite platform-specific
– Inline assembly code
– Platform-specific builtins

▪ Some minor C RTL differences to contend with when porting to OpenVMS

▪ Fun and games with C++ and shared libraries on HP-UX ia64

▪ LevelDB backend requires SMP beam
– … not quite sure how performant Riak would be with non-SMP beam!

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey

‹#›

Use of os:cmd() in Riak
• Minimal but significant
• For example, Riak uses the following code to check whether a particular process exists:

This might be portable across all (most) Linux/UNIX variants, but it certainly will not work on non-Linux/UNIX
platforms like Windows or OpenVMS

• There are also one or two "ls -l" commands, and "rm -rf" commands used in various pieces of test code

os_pid_exists(Pid) ->
 %% Use kill -0 trick to determine if a process exists. This _should_ be
 %% portable across all unix variants we are interested in.
 [] == os:cmd(io_lib:format("kill -0 ~s", [Pid])).

AGENDA
• Introduction
• Existing implementations and ports
• Building Erlang from source - a quick refresher
• Porting Erlang to a new platform
• Porting complex Erlang applications
• Some results
• Summary/conclusions
• Questions

‹#›

Some results
• Main focus in recent times has been around porting Erlang to OpenVMS

• Generally positive results

• Working ports of several releases of Erlang/OTP
– A few issues to resolve, but generally the OpenVMS ports are stable and work well
– SMP and full 64-bit support are probably the two biggest areas requiring refinement

• Working (or mostly working) ports of several sophisticated Erlang applications
– RabbitMQ
– Yaws (works very nicely)
– CouchDB
– Riak

• Performance is "satisfactory"
– Largely limited by performance of Erlang/OTP TCP/IP driver code on OpenVMS

– Kludged versions of poll() and select() are a major limiting factor

– Needs work

‹#›

Some results – RabbitMQ performance
• Can achieve message rates (publish and consume) of up to ~19000 messages per second on an old dual 1.6GHz CPU

rx4640 server using small messages
• Rates drop of rapidly with increasing message size
• This sort of result is actually not bad for OpenVMS
• But is still well below what can be achieved on a comparable Linux environment

• Mentioned poll() and select() issues previously

• OpenVMS TCP/IP driver needs work generally (we’re working on it)
• No problems with clustering, Mnesia, …

AGENDA
• Introduction
• Existing implementations and ports
• Building Erlang from source - a quick refresher
• Porting Erlang to a new platform
• Porting complex Erlang applications
• Some results
• Summary/conclusions
• Questions

‹#›

Summary
• The beam VM and other runtime components (epmd, inet_gethost, ...) are written in standard C

• Porting to any UNIX/Linux platform should usually be fairly straightforward, particularly if gcc and related GNU tools are
available
– Generally minor (but potentially subtle) changes are required

o C RTL and header file differences
– Important to check os:type() and os:cmd() calls in Erlang library code

• Porting to non-UNIX/Linux platforms is more problematic, but may not be as difficult as might be initially thought
– Most C compilers and C RTL's will be up to the task
– File system differences will often be the biggest challenge
– Other types of I/O may also present some problems
– Overcoming a lack of GNU tools may require some improvisation
– Take an incremental approach

o Get something simple working then add more features

• Porting HiPE to a new processor type is non-trivial
– Thankfully HiPE is not essential (although it may be nice to have)

• Many of the same considerations apply to porting Erlang/OTP itself and complex Erlang applications

‹#›

Summary – future plans
• Want Erlang/OTP to be part of our Open Source strategy for the OpenVMS operating system

• Have a working OpenVMS port
– A bit rough around the edges and there are a few loose ends to tidy up, but have proved viability

• Having Erlang on OpenVMS makes sense
– Similar design goals with respect to fault tolerance, availability, ...
– Of relevance to existing OpenVMS users
– Can help to attract new users
– Might even look at adding support for OpenVMS ICC (Intra Cluster Communication) and a few other things

AGENDA
• Introduction
• Existing implementations and ports
• Building Erlang from source - a quick refresher
• Porting Erlang to a new platform
• Porting complex Erlang applications
• Some results
• Summary/conclusions
• Questions

Thank you

