—

—

ERICSSON

F WiNo N

ORCHESTRATION

a System for Management and Orchestration of
Distributed Heterogeneous Cloud

Joacim.halen@ericsson.com

Initial Assumption

Create a cloud
solution that
leverages the
network architecture

Ericsson provides.
|dentify problems
and verify solutions
through prototypes.

eeeeeeeeeeeeeeeeeeeeeeeeeeeee

Distributed Cloud

Distributed Heterogeneous Cloud

Erlang User Conference 2015 | Page 3

Distributed Heterogeneous Cloud

Q Big data center with ~10° servers

Erlang User Conference 2015 | Page 4

Distributed Heterogeneous Cloud

Q Big data center with ~10° servers

@ Small data center with ~102 servers

Erlang User Conference 2015 | Page 5

Distributed Heterogeneous Cloud

Each data center may run a
different Cloud Operating System
or stack, e.g. OpenStack,
CloudStack, OpenNebula, etc.

eeeeeeeeeeeeeeeeeeeeeeeeeeeee

Requirements and Design Goals

» Fully heterogeneous environment

» All APls should be RESTHul

» The system should be built around separate services
» Let applications drive requirements

» Simplify and automate as much as possible

Erlang User Conference 2015 | Page 7

—

g

ERICSSON

Architecture (simplified)

» Separate services

» RESTful APls

» Multi-tenant support
» Plug-in based

» Applications can
use all APls

 Adaptable Northbound Interface
Scaling

Cloud Execution D¥

nnnnnnnnnnnnn

9 Fundamental Service
Intermediate Level Service

High Level Service
Erlang User Conference 2015 | Page 8

Compute and Network
Services

Compute Service

Extended with the concept of location

» Geographical location » Other
—Region —Latency
—Country —Close to IP
— City —Between two nodes
—Data center (node) — At end of longest common
Rack path

Host —Etc.

Erlang User Conference 2015 | Page 10

Simple network

Erlang User Conference 2015 | Page 11

Add context

L2

[—— '—IH [—TH
——1 C—e —1
1) [——1] ——1)
1 (—— 1] ——1
(—— 1 —— 1] ——1)
—— 1 —— 1] ——1
c—e — 1 c—e

Erlang User Conference 2015 | Page 12

Possible realization

— tunnel — tunnel —

X | . || G

GW GW GW
L2 L2 .2

Erlang User Conference 2015 | Page 13

A Different context

L3

Erlang User Conference 2015 | Page 14

Would Include elements as

» Firewalls
y NAT
» Routers

Erlang User Conference 2015 | Page 15

Problem

Server, storage, and network resources
cannot be allocated independently of each
other in a distributed cloud!

Erlang User Conference 2015 | Page 16

Solution

Separate resource allocation and placement
from rest of resource management!

Erlang User Conference 2015 | Page 17

Container Service

Service Container (BNF)

ERICSSON

BODY ::= {"service" : {
"name" : STRING,
"vpcRef" : INTEGER,
"parameters"” : { PARAMETERS },
"definitions" : { DEFINITIONS },
"temporals" : [TEMPORALS],
"scaling" : { SCALING_RULES },
"networks" : [NETWORKS]} }

DEFINITIONS ::= DEFINITION , DEFINITIONS
| DEFINITION
DEFINITION ::= NAME : OBJECT

OBJECT SERVER | PORT | NETWORK

Erlang User Conference 2015 | Page 19

EX1 - specification

ERICSSON

{
“service” : {
“name” : “Example 17,
“definitions” : {
“sl1l” : {“server” : {.. “Montreal” ..}},
“s2” : {“server” : {.. “San Jose” ..}},
“s3” : {“server” : {.. “Stockholm” ..}}
},
“‘networks” : |
{“network” : {
“layer” : 2,
“name” : “Example Network”,
“attributes” : {..},
“ports” : [“S1”, “S2”, “S3"]}

}

Erlang User Conference 2015 | Page 20

Scaling Service

Scaling Service

« Based on set of application defined >
rules used as templates for how to ofg?f
add or remove infrastructure <
resources

* Defines limits on minimal and

maximal amount of resources

» Application has full control on how to
activate rules:
* By using API calls &

» By defining automatic triggers | P
specifying metrics to be monitored
and thresholds to be met

Erlang User Conference 2015 | Page 22

Scaling Use cases

No scaling — application without scaling rules will not be auto-scaled.

Application controlled scaling — rules works as templates of
possible complex infrastructure resources to be added or removed
with one call from the application.

Application defined automatic scaling — rules will be invoked
automatically by the trigger service using application defined triggers
with specified metrics and thresholds.

Application defined semi-automatic scaling — rules will be invoked
either by the application thru API or automatically by the trigger
service using application defined triggers with specified metrics and
thresholds, e.g. scale-out is monitored and triggered automatically and
scale-in is triggered by application.

Erlang User Conference 2015 | Page 23

Scaling Rule (BNF)

ERICSSON

SCALING_RULE

Erlang User Conference 2015 | Page 24

P

::= {"scaling-rule" : {

”name” : NAME,

”parameters” : { PARAMETERS },
”»initial parameters” : IPARAMETERS },
”scale out” : SCALE-OUT,

”scale _in” : SCALE-IN,

”scale up” : SCALE-UP,

”scale down” : SCALE-DOWN,

”triggers” : [TRIGGERS],

”template” : TEMPLATE,

“notify” : [RECIPIENTS]

Image Service

DAWN SERVER
DAWN DB

CLOUD
MANAGER

DAWN AGENTS
WITH CREDENTIALS &
IMAGE TRANSFORMATION

openstack® openstack”
Erlang User Conference 2015 | Page 26

Implementation

A Closer Look

 Adaptable Northbound Interface
Compute

Service
 Adaptable Southbound Interface

Erlang User Conference 2015 | Page 28

ERICSSON

Compute Service

API Northbound API
Server

D YAWS receives the request

Wind OpensStack
Compute Compute @ YAWS creates a worker process
Interface Interface
@ The worker calls out(...) in the API
4 Decode

[server][flavor]{ image]

® Verify authorization

[location] [tenant][Node]

® Translate from external to canonical
@ Dispatch to resource handler

Nova libvirt HTTP Client

Plug-in J Plug-in J Plug-in J Post process result

Q) Translate from canonical to external

Common

lmodule| @ | plug-in \

Erlang User Conference 2015 | Page 29

ERICSSON

Code snippet

LocalToken = get local token(Tenant, Node),
case wpim:invoke (Node,

?WPIM COMPUTE,

server create,

[Node, LocalToken, Server, Flavor, Image])
of

Erlang User Conference 2015 | Page 30

Plug-ins

» Simple “behavior”

» Two callback functions
load(Config) -> {ok, State}
unload(State) -> ok
» All user defined functions that are exported must take
an extra parameter “State”
foo(P1, P2, State) -> {reply, Reply, State}
» Plug-ins can be defined to be pre-loaded or loaded at
first use

» Plug-ins have a user defined type

Erlang User Conference 2015 | Page 31

PIM — Plug-in Manager

» Basic plug-in management
» Makes sure a plug-in is loaded when needed

» Thread safe, execution of user defined functions in a
plug-in is done in the calling process, not in pim

» All calls to a plug-in is done through pim
pim:invoke(Name, Function, Args)

» Finds plug-in based on name or type

» Search functions to find a plug-in or set of plug-ins

» More complex selection of plug-ins is done in wrappers

Erlang User Conference 2015 | Page 32

ERICSSON

Wrappers

» wpim — Wind Plug-In Manager

» Location based selection of plug-ins
wpim:invoke(Node, Name, Function, Args)
wpim:invoke(Node, Type, Function, Args)
wpim:invoke(NodeA, NodeB, Type, Function, Args)
wpim:invoke(Name, Function, Args)

» drim — Driver Manager
» Singleton plug-ins, i.e. drivers
» Example, database driver

Erlang User Conference 2015 | Page 33

Evirt

» Erlang API to libvirt

» One-to-one mapping
» 280+ functions in API
» Supports libvirt 0.9.3

» Full support for callback
functions

» Based on aspd

Erlang User Conference 2015 | Page 34

_.

ASPD

Asynchronous Synchronous Port Driver

» Bridge between libraries

—Erlang to C
—C to Erlang
st | levitl—fibvig > S'Mmpletouse |
I I » Support callback functions
S » Library of convenience
aspd —— aspd
| macros

» Support for logging

Erlang User Conference 2015 | Page 35

Testing

» Using eunit

» Tests at each level test that
level and all levels involved
below

» HT TP-client plug-in emulates
a distributed OpenStack
based cloud

» Wind does not know if it runs
against a real cloud or the
emulator

Erlang User Conference 2015 | Page 36

Normal mode

Internal

request

Southbound

4

b

[http_client

.

ibrowse_plugin

.

External

request

Southbound

/4

Testing

» Using eunit

» Tests at each level test that
level and all levels involved
below

» HT TP-client plug-in emulates
a distributed OpenStack
based cloud

» Wind does not know if it runs
against a real cloud or the
emulator

Erlang User Conference 2015 | Page 37

Test mode

Internal
Southbound
request

4

b

http_client

.

emulator_plugin

Reflection

ERICSSON

Northbound request & response

-

e S,
o

Plug-In
Manager

-
‘‘‘‘‘

Database

ibrowse
worker

Southbound request & response

Erlang User Conference 2015 | Page 38

» Most code handling a
request executes in
the worker process
assigned by YAWS

» Request to internal
processes are in
most cases very short

» Less risk of deadlock
iIn complicated chains

Current Work

» Fully distributed scheduler
» Policy description language and engine

» eflows
—New behavior
—Flows of tasks that will be executed as one

Erlang User Conference 2015 | Page 39

ERICSSON

ldentity Service

Problem

Difficult to have global identities that spans
over multiple data centers in a
heterogeneous environment!

Erlang User Conference 2015 | Page 43

ERICSSON

Example — Create Server 1

Tenant Prime Wind Compute Keystone Nova

authenticate(...)

Global Token

server_create(GT, ...)

g<et_local_token(Tenant, Node)

authenticate(admin)

Local Admin Token

tenant_create(LAT, ...)

>
Local Tenant
user_create(LAT, ...) o)
Local Tenant Admin User
authenticate(LTAU) |
Local Token
<
Local Token N
server_create(LT, ...) 5|
¢ Local Server Object

Global Server Object

Erlang User Conference 2015 | Page 44

Example —

—

g

ERICSSON

Create Server 2

Tenant

Prime Wind Compute Keystone Nova

server_create(GT, ...)

g(et_local_token(Tenant, Node)

Local Token

\ 4

server_create(LT, ...)

Local Server Object

Global Server Object

Erlang User Conference 2015 | Page 45

ERICSSON

Code snippet

LocalToken = get local token(Tenant, Node),
case wpim:invoke (Node,

?WPIM COMPUTE,

server create,

[Node, LocalToken, Server, Flavor, Image])
of

Erlang User Conference 2015 | Page 46

