
Erlang Solutions Ltd.

© 1999-2015 Erlang Solutions Ltd.

The fun part of writing a
Thrift codec

© 1999-2015 Erlang Solutions Ltd.

Agenda
● The context

● What is Thrift

● Binary handling in Erlang

● The new library

2

© 1999-2015 Erlang Solutions Ltd.

SSP at AOL

The context

3

Adserver 
(C++)

RTB Exchange
(Erlang)

Thrift over

ZMQ

• Thrift is mostly used for serialisation between CPP and Erlang.
• Adserver considered as blackbox -> change to other serialisation technique (e.g.

protobufs) is not an option

© 1999-2015 Erlang Solutions Ltd. 4

What is Thrift

© 1999-2015 Erlang Solutions Ltd.

What is Thrift

5

• Apache Thrift is a software framework for scalable  
cross-language services development.

• IDL: define data types and service interfaces in a simple definition
file

• Compiler: from IDL files generates code to be used to easily build
RPC clients and servers that communicate seamlessly across
programming languages.

© 1999-2015 Erlang Solutions Ltd.

Thrift - Types
Base Types

• bool: a boolean value (true or false),
one byte

• byte: a signed byte
• i16: a 16-bit signed integer
• i32: a 32-bit signed integer
• i64: a 64-bit signed integer
• double: a 64-bit floating point number
• string: encoding agnostic text or binary
string

6

Container Types

not heterogeneous - all items in a
container must be of the same type

• list<t1>: ordered
• set<t1>: unique values
• map<t1, t2>: unique key

Structs (and Exceptions)

field: numeric unique id, type, name,
optional default value

© 1999-2015 Erlang Solutions Ltd.

Thrift - Services
• service (RPC interface): collection of methods

• method: has a return type, arguments and optionally a list of
exceptions that it may throw.  
(Note that argument lists and exception list are specified using
the exact same syntax as field lists in structs. Actually the
argument list is passed as an anonymous struct on the wire, and
the result is also an anon struct with only field 0 holding the
result data.)  

• oneway method: asynchronous, no response sent back

• returns void: result is an empty struct

7

© 1999-2015 Erlang Solutions Ltd.

Thrift - Network Stack
• Transport (TCP, HTTP, file): stream based API

• Protocol (JSON, XML, binary, compact): data structures

• Processor (compiler generated in many languages, not really in
erlang): messages/methods

• Server/Client

8

• idea: squash together these layers

© 1999-2015 Erlang Solutions Ltd.

The old
• too flexible protocols/

transports: layers, callbacks,
encapsulated states

• stream based transport
whereas ZMQ has packet
based API (buffering hack in
our thrift_zmq_transport.erl)

• erlang IDL compiler only
generates code that returns
data types as simple terms

The new

Why write a new Thrift codec

• no callbacks

• direct binary access

• simpler decoder/encoder API

• generated code to use all info
available from the IDL at
compile time - generate the
actual encoder/decoder code

9

© 1999-2015 Erlang Solutions Ltd. 10

Binary handling in Erlang

© 1999-2015 Erlang Solutions Ltd.

Binary handling in Erlang
• Bit Syntax

- introduced in R7B http://www.erlang.org/euc/00/R7B.html
- talk of the year from EUC 2000 (congrats :))

• Binaries are cheap to append to the end and read from the
beginning

11

http://www.erlang.org/euc/00/R7B.html

© 1999-2015 Erlang Solutions Ltd.

Internal binary types
• Containing binary data

- heap binaries (up to 64 bytes)
- RefC binaries (ProcBin reference + off-heap binary object)

• References to a part of a binary

- sub binaries: split_binary or binary matched out of a binary;
references a heap or RefC binary (never another SubBin)

- match context: interim data structure similar to sub binaries
but optimised for matching (contains more info)

12

© 1999-2015 Erlang Solutions Ltd.

Constructing binaries
• creating new binary: two steps

1. allocate empty heap or RefC binary based on the required size
(bs_init, bs_init_writable beam ops)

2. write new data into it 
bs_put_{integer,float,string,binary}

• appending to existing: two steps
1. make sure there is space in the end for new data  

(maybe expand binary and leave some extra space)  
bs_append, bs_private_append beam ops

2. write new data to the end  
bs_put_{integer,float,string,binary}

13

© 1999-2015 Erlang Solutions Ltd.

Bin0 = <<1>>, %% 1.

Bin1 = <<Bin0/binary,2,3,4>>, %% 2. 
 
 
 
 
 
 
 
 
 

Bin2 = <<Bin1/binary,5,6,7>>, %% 3.

Bin3 = <<Bin1/binary,17>>, %% 4

{Bin2,Bin3} %% 5.

Binary append example
1. assigns a heap binary to the Bin0 variable.

2. append operation. As Bin0 has not been
involved in an append operation

1. a new RefC binary is created and the
contents of Bin0 is copied into it.

2. the ProcBin part of the RefC bin has size
set to the size of the data stored (4
bytes)

3. the binary object has extra space
allocated. its total size is either twice
the size of Bin1 (the new binary) or
256, whichever is larger. (now 256
bytes)

3. Bin1 has been used in an append operation,
and it has 256-4 bytes of unused storage at
the end, so the 3 new bytes are stored
there.

4. Bin1 is not the result of latest append. Bin1
has to be copied and expanded

14

© 1999-2015 Erlang Solutions Ltd.

Binary init in details

15

subbin
heapbin

subbin
procbin

binobj

1. heap binary  
(bytesize =< 64)

2. RefC binary  
(bytesize > 64)

3. heap bitstring 
(bitsize mod 8 /= 0)

4. RefC bitstring 
(bitsize mod 8 /= 0)

heapbin

procbin
binobj

© 1999-2015 Erlang Solutions Ltd.

Binary append in details

16

subbin
procbin

binobj

If SubBin or ProcBin is not
writable

allocate binaries:

- SubBin is part of a newly created
binary (not appended yet)

- SubBin is not the last append
- RefC was copied to other process

(it’s not the only reference)

1. check if binary is writeable 
(can be modified in place)

© 1999-2015 Erlang Solutions Ltd.

Binary append in details

17

subbin
procbin

binobj

binobj

If SubBin or ProcBin is not
writable

allocate binaries:
1. new binary object with size

= max(256, 2 * (old bin
size + size of data to be
appended))

© 1999-2015 Erlang Solutions Ltd.

Binary append in details

18

subbin
procbin

binobj

procbin
binobj

If SubBin or ProcBin is not
writable

allocate binaries
1. new binary object with size

= max(256, 2 * (old bin
size + size of data to be
appended))

2. writable ProcBin pointing to
the binary object

© 1999-2015 Erlang Solutions Ltd.

Binary append in details

19

subbin
procbin

binobj

subbin
procbin

binobj

If SubBin or ProcBin is not
writable

allocate binaries
1. new binary object with size

= max(256, 2 * (old bin
size + size of data to be
appended))

2. writable ProcBin pointing to
the binary object

3. writable SubBin pointing to
the ProcBin

© 1999-2015 Erlang Solutions Ltd.

Binary append in details

20

subbin
procbin

binobj

subbin
procbin

binobj

If SubBin or ProcBin is not
writable

allocate binaries
1. new binary object with size

= max(256, 2 * (old bin
size + size of data to be
appended))

2. writable ProcBin pointing to
the binary object

3. writable SubBin pointing to
the ProcBin

4. copy the original data into
the new binary object

© 1999-2015 Erlang Solutions Ltd.

1. check if binary is writeable 
(can be modified in place)

(ProcBin is writable only if
there is only one reference
to the binobj ie. only this
process has a copy)

Binary append in details

21

subbin
procbin

binobj

? ?

© 1999-2015 Erlang Solutions Ltd.

if YES then all is good  
mark SubBin as not writeable  
(immutability)

Binary append in details

22

subbin
procbin

binobj

Y Y

subbin

© 1999-2015 Erlang Solutions Ltd.

2. check if there is enough
room (after updating
ProcBin size

Binary append in details

23

subbin
procbin

binobj

if YES then all is good

© 1999-2015 Erlang Solutions Ltd.

2. check if there is enough
room (after updating
ProcBin size

Binary append in details

24

subbin
procbin

binobj

if YES then all is good

3. finally create new
writable SubBin pointing
to ProcBin and return it

subbin

© 1999-2015 Erlang Solutions Ltd.

Binary append in details

25

subbin
procbin

binobj

binobj

2. if NOT enough room
1. reallocate binary object

with size = 2 * (old bin
size + size of data to be
appended)  
(copying its old content)

© 1999-2015 Erlang Solutions Ltd.

Binary append in details

26

subbin
procbin

binobj

2. if NOT enough room
1. reallocate binary object

with size = 2 * (old bin
size + size of data to be
appended)  
(copying its old content)

2. update ProcBin to point
to new binary object

© 1999-2015 Erlang Solutions Ltd.

Binary append in details

27

subbin
procbin

subbin

binobj

3. finally create new
writable SubBin pointing
to ProcBin and return it

© 1999-2015 Erlang Solutions Ltd.

Constructing binaries - worth noting
• "As the runtime system handles the optimisation (instead of the

compiler), there are very few circumstances in which the
optimisation does not work." 
Less room for code generation-time optimisations

• When a binary is marked as not writable, it will be shrunk at the
same time to reclaim the extra space allocated for growing.

• Appending to a binary always creates a RefC binary with size of at
least 256 bytes (even if just 2 bytes are concatenated)

• Tracing sends binaries (in arguments) which marks them as non-
writable enforcing more copying and allocation for the same code

28

© 1999-2015 Erlang Solutions Ltd.

skip_byte(<<_, Bin1/binary>>) ->
 Bin1.

Binary matching

1.bs_start_match2 - a match context is created (The match context points to the
first byte of the binary)

2.bs_skip_bits2 - 8 bit skipped (The match context is updated to point to the
second byte in the binary)

3.bs_get_binary - match out the remainder of the binary creating a SubBin 
match context is not used anymore, it is garbage_collected at next gc run

29

© 1999-2015 Erlang Solutions Ltd.

skip_byte(<<_, Bin1/binary>>) ->
 match_byte(Bin1).

match_byte(<<Byte, _/binary>>) ->
 Byte.

Binary matching

1.bs_start_match2
2.bs_skip_bits2
3.bs_get_binary - no SubBin created (only size is checked that Bin1 is indeed a

binary and not a bitstring - bs_test_unit)
4. bs_start_match2 in match_byte - basically does nothing when it sees that it

was passed a match context instead of a binary.
5.bs_get_integer2 - 8 bit matched into an integer (The match context is updated)
6.bs_context_to_binary - in case of function_clause (3., 5. fails) the match context

is converted back to a binary (SubBin is created pointing to the binary object)

30

© 1999-2015 Erlang Solutions Ltd.

Delayed sub binary optimisation
• Since R12B the compiler sees that there is no point in creating a

sub binary, because there will soon be a call to a function that
immediately will create a new match context and discard the sub
binary.

• Happens at a late stage in the compiler on beam asm code

• Removing or replacing op bs_get_binary

• All places must be binary matching where the bin/match context is
used

• Enable verbose info with compiler option bin_opt_info

- Compiler emits warnings where it could/couldn't optimise
- Emits info messages for local functions which cannot handle

match_context as arg

31

© 1999-2015 Erlang Solutions Ltd.

• SubBin is used to create a term or returned

read_struct(Bin0, Struct) ->
 {Bin1, Type} = prot_read(Bin0, byte),
 {Bin2, Field} =
 case Type of ?TYPE_I16 ->
 prot_read(Bin1, i16);
 …
 end,
 read_struct(

 Bin2, set_field(Struct, Field));
…

prot_read(<<I16:16, Bin/binary>>, i16) ->
 % Warning: NOT OPTIMIZED:
 % sub binary is used or returned
 {Bin, I16};
prot_read(<<Byte, Bin/binary>>, byte) ->
 % Warning: NOT OPTIMIZED:
 % sub binary is used or returned
 {Bin, Byte}.

Bin opt cannot be applied when

read_struct(<<?TYPE_I16, Field:16,
 Bin/binary>>, Struct) ->
 % Warning: OPTIMIZED:
 % creation of sub binary delayed
 read_struct(
 Bin, set_field(Struct, Field));
…

32

© 1999-2015 Erlang Solutions Ltd.

Bin opt cannot be applied when
• SubBin is used to create a term or returned

• SubBin is passed to a remote function 
(if its passed to an erlang:split_binary call it can be replaced with
a matching)

• SubBin is matched or used in more than one place

• different control paths use different positions in the binary

• catch or try/catch is used

33

© 1999-2015 Erlang Solutions Ltd.

read(<<I:16, _/binary>>, i16) ->
 I;
read(Bin, struct) ->
 a:read_struct(Bin);
read(<<I:32, _/binary>>, i32) ->
 %% INFO: matching non-variables after a previous clause matching a variable
 %% will prevent delayed sub binary optimization
 I.

Bin opt cannot be applied when
• called local function does not begin with a suitable binary

matching instruction
- not only plain variables as args to the left of binary pattern 

(change arg order, make binary to be matched the first arg)
- or one of them is used in a guard
- the whole binary or a matched out binary is used in a guard
- in consecutive clauses non-variable after a variable (underscore is also a

variable!) (changing clause order might help)

34

© 1999-2015 Erlang Solutions Ltd. 35

The new library

© 1999-2015 Erlang Solutions Ltd.

The new library
• provides two codecs (only for the binary protocol)

- generic (just squash together: zmq transport + binary
protocol)

- generated (same API)

• generator

- uses the output erlang modules of original thrift compiler
- generates one codec module per service
- supports custom decoder for given type - can be manually

optimised

36

© 1999-2015 Erlang Solutions Ltd.

• cascading style
• how to pass additional args to Handler
• how to measure encode/decode time

ProtoGen = fun() ->
 {ok, Transport} =
 thrift_zmq_transport:new(BinRequest, Pid, ZmqHeaders),
 {ok, Protocol} =
 thrift_binary_protocol:new(Transport),
 {ok, Protocol}
end,
thrift_processor:init(
 {server_name, ProtoGen, Service, HandlerCB}).

Old usage example

37

© 1999-2015 Erlang Solutions Ltd.

New simple API
-spec decode_request(BinRequest :: binary(),
 Service :: atom())
 -> {Seqid :: integer(),
 Function :: atom(),
 Params :: tuple()}.

-spec encode_result(Seqid :: integer(),
 Function :: atom(),
 Result :: {reply, term()} | ok,
 Service :: atom())
 -> {send, BinReply :: binary()} | nosend.

38

© 1999-2015 Erlang Solutions Ltd.

Performance results
• encoding (append - VM optimised)

- generic/simple squashing: big gain (~8x)
- generated: small additional gain (~16x)

• decoding (matching - compiler optimised)

- generic/simple squashing: small gain (~2x)
- generated: big additional gain (~16x)

• why the difference in gain between encoding and decoding?

39

© 1999-2015 Erlang Solutions Ltd.

%% thrift_binary_protocol
write(#bin_prot{transport = Trans}, {i32, I32}) ->
 thrift_transport:write(Trans, <<I32:32/big-signed>>);

%% thrift_zmq_transport
write(#zmq_trans{buf = Buf}, Data) ->
 #zmq_trans{buf = <<Buf/binary, Data/binary>>}.

The generic codec
• in the old lib a SubBin is created for every base type data
• can be avoided by merging the two layers together (no code

generation needed)

40

© 1999-2015 Erlang Solutions Ltd.

What code to generate
• Binary arg always the first

• Avoid returning the tail-binary, chain of function calls

• Use IDL info: from field id we know field type, from field type we
know how to match the field value

• lists of base types (fixed-length) can be encoded/decoded in
batches let's say decoding every 10 element at once

• similarly encoding/decoding consecutive base type struct fields in
one go (decoder caution: field order is not fixed)

Issues

• variable-length fields (list of struct with list field)

41

© 1999-2015 Erlang Solutions Ltd.

Generated code example
decode_structA(<<?TypeI32:16, 9, Val:32, Bin/binary>>,
 StructA) ->
 decode_fields_structA(Bin, setelement(9, StructA, Val);

decode_fields_structA(
 <<?TypeList:16, 10, ?TypeI32:16, Size, Bin0/binary>>,
 StructA) ->
 {Bin, Val} = decode_list_i32(Bin0, Size, []),
 decode_fields_structA(Bin, setelement(10, StructA, Val);

42

© 1999-2015 Erlang Solutions Ltd.

The new library
• Addresses a specific scenario

• Performance gain

• Simpler API

• Was a good learning as well

43

© 1999-2015 Erlang Solutions Ltd.

Questions, Comments…

44

