Bridging the Divide: A New Tool-Support Methodology for Programming Heterogeneous Multi-Core Machines

Chris Brown, Vladimir Janjic and Kevin Hammond
University of St Andrews, Scotland

T: @chrismarkbrown, @paraphrase_fp7
E: cmb21@st-andrews.ac.uk
W: http://www.paraphrase-ict.eu
2014: a ManyCore Odyssey
AMD Mullins/Beema APU

- 4 Core x86 CPU
- 1 ARM PSP Security Core
- Graphics Core next to GPU with 128 cores
 - Used in e.g. Xbox 360
- Power consumption ~4.5W
The Future: “megacore” computers?

- Hundreds of thousands, or millions, of (small) cores
What will “megacore” computers look like?

- Probably not just scaled versions of today’s multicore
 - Perhaps hundreds of dedicated lightweight integer units
 - Hundreds of floating point units (enhanced GPU designs)
 - A few heavyweight general-purpose cores
 - Some specialised units for graphics, authentication, network etc
 - possibly soft cores (FPGAs etc)
 - Highly heterogeneous
What will “megacore” computers look like?

- Probably *not* uniform shared memory
 - NUMA is likely, even hardware distributed shared memory
 - or even message-passing systems on a chip
 - *shared-memory will not be a good abstraction*
Laki (NEC Nehalem Cluster) and hermit (XE6)

Laki
- 700 dual socket Xeon 5560 2.8GHz ("Gainestown")
- 12 GB DDR3 RAM / node
- Infiniband (QDR)
- 32 nodes with additional Nvidia Tesla S1070
- Scientific Linux 6.0

hermit (phase 1 step 1)
- 38 racks with 96 nodes each
- 96 service nodes and 3552 compute nodes
- Each compute node will have 2 sockets AMD Interlagos @ 2.3GHz 16 Cores each leading to 113,664 cores
- Nodes with 32GB and 64GB memory reflecting different user needs
- 2.7PB storage capacity @ 150GB/s IO bandwidth
- External Access Nodes, Pre- & Postprocessing Nodes, Remote Visualization Nodes
The Fastest Computer in the World

Tianhe-2, Chinese National University of Defence Technology

33.86 petaflops/s (June 17, 2013)
16,000 Nodes; each with 2 Ivy Bridge multicores and 3 Xeon Phis
3,120,000 x86 cores in total!!!
It’s not just about large systems

- Even mobile phones are multicore
 - Samsung Exynos 5 Octa has 8 cores, 4 of which are “dark”

- Performance/energy tradeoffs mean systems will be increasingly parallel

- If we don’t solve the multicore challenge, then no other advances will matter!
Parallel Hardware Today

- Computer hardware is getting more and more parallel
 - 64-core machines available off-the-shelf for a modest price

- It is also getting more and more heterogeneous
 - Any decent desktop machine comprises a multicore CPU and many-core GPU
 - Even mobile phones come with multiple GPUs
The Manycore Challenge

“Ultimately, developers should start thinking about *tens, hundreds, and thousands* of cores *now* in their algorithmic development and deployment pipeline.”

The **ONLY** important challenge in Computer Science (Intel)

Also recognised as thematic priorities by EU and national funding bodies

Patrick Leonard, Vice President for Product Development
Rogue Wave Software
But Doesn’t that mean millions of threads on a megacore machine??
Thinking Parallel

- Fundamentally, programmers must learn to “think parallel”
 - this requires new *high-level* programming constructs
 - perhaps dealing with hundreds of *millions* of threads

- You cannot program effectively while worrying about deadlocks etc.
 - they must be eliminated from the design!

- You cannot program effectively while fiddling with communication etc.
 - this needs to be packaged/abstracted!

- You cannot program effectively without performance information
 - this needs to be included as part of the design!
ParaPhrase Project: Parallel Patterns for Heterogeneous Multicore Systems (ICT-288570), 2011-2014, €4.2M budget

13 Partners, 8 European countries
UK, Italy, Germany, Austria, Ireland, Hungary, Poland, Israel

Coordinated by Kevin Hammond St Andrews
The ParaPhrase Approach

- Start bottom-up
 - identify (strongly hygienic) **COMPONENTS**
 - *using semi-automated refactoring*

- Think about the **PATTERN** of parallelism
 - e.g. map(reduce), task farm, parallel search, parallel completion, ...

- **STRUCTURE** the components into a parallel program
 - *turn the patterns into concrete (skeleton) code*
 - Take performance, **energy** etc. into account (multi-objective optimisation)
 - also using refactoring

- **ReSTRUCTURE** if necessary! *(also using refactoring)*
In This Talk...

- Provide an Erlang skeleton library to make it easier to deal with parallelism
- Extend this library to deal with CPU/GPU systems
 - Heterogeneous Erlang skeletons
 - openCL bindings
- Provide refactoring Tool-Support to ease the introduction of the GPU code
- Show initial heterogeneous results for Erlang
Some Common Patterns

- High-level abstract patterns of common parallel algorithms

Google map-reduce combines two of these!

Generally, we need to nest/combine patterns in arbitrary ways.
The *Skel* Library for Erlang

- Skeletons implement specific parallel patterns
 - Pluggable templates

- **Skel** is a new (AND ONLY!) Skeleton library in Erlang
 - map, farm, reduce, pipeline, feedback
 - instantiated using `skel:do`

- **Fully Nestable**

- A DSL for parallelism

```erlang
OutputItems = skel:do(Skeleton, InputItems).
```

ChrisB. Host.CS.St-Andrews.AC.UK/Skel.html

https://github.com/ParaPhrase/skel
Parallel Pipeline Skeleton

- Each stage of the pipeline can be executed in parallel
- The input and output are streams

\[
\text{Skel:do}([\{\text{pipe, [Skel}_1, \text{Skel}_2, \cdots, \text{Skel}_n]\}], \text{Inputs}).
\]
Farm Skeleton

- Each worker is executed in parallel
- A bit like a 1-stage pipeline

```
skel:do([\{farm, Skel, M\}], Inputs).
```

```erlang
skel:do([\{farm, Skel, M\}], Inputs).
```
Using The Right Pattern Matters

Speedups for Matrix Multiplication

No. cores

Speedup

- Naive Parallel
- Farm
- Farm with Chunk 16

Graph showing speedups for matrix multiplication with different parallelization techniques.
Download from ...

http://www.cs.st-andrews.ac.uk/~chrisb/ParaPhrase_Refactorer.tar.gz
https://github.com/ParaPhrase/skel

(Refactoring Tool)
(Skel Library)
Constructing Farms...

- **Seq, component wrapper for worker function:**
 - `{seq, fun worker/1}`

- **Create a farm of workers:**
 - `{farm, [{seq, fun worker/1}], nWorkers}`

- **Wrap it inside a skel call:**
 - `skel:do([{farm, [{seq, fun worker/1}], nWorkers}], input)`
Refactoring Tool Support

- The process of changing the structure of an application while preserving its functional semantics

- Semi-automated approach that is more general than fully automated parallelisation techniques
Programing Heterogeneous Systems...

- ...is hard!

- Mainstream programming models (e.g. OpenCL, CUDA+pthreads) are too low-level for an average programmer

- Many applications can be parallelised in more than one way

- Choosing which parallel structure to exploit is a non-trivial problem
 - Trial-and-error approach can be very costly
Linking with OpenCL

- OpenCL binding for Erlang
 - Basically wraps up openCL in Erlang ‘FFI’ like calls
 - User required to provide an openCL kernel
 - Provides GPU setup/offloading/marshalling ...
 - Requires kernel parameters to be Erlang binaries
 - Basically a pointer to the raw data
 - https://github.com/tonyrogl/cl
E = clu:setup(all),
{ok,Program} = clu:build_source(E, "solve2"),
{ok,Kernel} = cl:create_kernel(Program, "solveKernel")

cl:create_buffer(E#cl.context, [read_only], byte_size(Argument)),

cl:set_kernel_arg(Kernel, 0, K#kwork.argument),

Linking with OpenCL
{ok,E3} =
cl:enqueue_read_buffer(K#kwork.queue,

K#kwork.omem, 0, Nk, [E2]),

{ok,Bin} = cl:wait(K#kwork.e3),
Heterogeneous Patterns

Farm
Heterogeneous Patterns

Heterogeneous Farm

![Diagram of a heterogeneous farm structure]

- [Image of a network diagram with nodes and connections, possibly representing different types of entities or resources within a farm.]
Heterogeneous Farms

- New types of heterogeneous components:
 - `{seqCPU, fun CPUworker/1, nCPUWorkers}`
 - `{seqGPU, fun GPUworker/1, nGPUWorkers}`

- Heterogeneous Farms:
 - Skel:do([{farm, {seqCPU, fun CPUworker/1, nCPUWorkers},
 {seqGPU, fun GPUworker/1, nGPUWorkers}], inputs})
Heterogeneous Parallel Refactoring

- **Generates** calls to openCL bindings
 - Uses dialyzer underneath to find the types of the kernel arguments
- Eliminates tedious and massively error-prone openCL writing

- Assumes an already supplied openCL kernel

- Adds in number GPU/CPU workers, using a static mapping technology
An ACO algorithm consists of a number of iterations in which each ant finds a solution, partially guided by a *pheromone trail*.

The *pheromone trail* is updated based on the best solution in each iteration.

We use ACO to solve the Single Machine Total Weighted Tardiness Problem.

A Skel task farm and feedback skeletons are used to parallelise ACO.
ant_colony(FName, Num_Ants, Num_Iters, Num_Workers) ->
 {Num_Jobs, Process_Time, Weight, Deadline, Tau} =
 binary_ant_init:init(FName),
 Chunk_Size = Num_Ants div Num_Workers,

Pipe = {pipe, [{farm, [{seqCPU, fun(X) -> lists:map(fun(Y) ->
 binary_par_solve:find_solution(Y) end, X) end,
 nCPUWorkers}]),

 {seq, fun(X) -> pick_update_spawn_list_lists(Num_Workers,
 Chunk_Size, X) end}]}},
Ant Colony Optimisation

Feedback = {feedback, [Pipe], fun ant_feedbacK/1},
 skel:do([Feedback], [lists:duplicate(Num_Workers,
 lists:duplicate(Chunk_Size,
 {Num_Jobs, Process_Time, Weight,
 Deadline, Tau, Num_Iters}))))}.
Experimental Machine

All measurements

- 2.4GHz 24-core, dual AMD Opteron 6176 architecture
- Nvidia Tesla C2050 Fermi GPU (448 CUDA cores)
- Centos Linux 2.6.18-274.e15.
- Erlang 5.9.1 R15B01,
- Averaging over 10 runs
Parallel ACO with Skel

Figure 8. Speedup figures for a 1D Haar Transform, for 2048 audio files, with a sample size of 4400.

Figure 9. Speedup figures for a 2D Haar Transform, for 24 images, 1024x1024.

Figure 10. Speedup figures for the Ant Colony Optimisation example, for 1,000 jobs, for 32 ants, over 10 iterations.

Figure 11. Speedup figures for an Image Merge, for 100 pairs of images, 1024x1024.

7. Related Work
The Skel framework was introduced in [5], together with a methodology for parallelising Erlang programs using refactoring tools and cost-models. In this paper we attempted to follow the methodology, replacing the refactoring tool-support with a manual refactoring process instead. Since the nineties, the skeletons research community has been working on high-level languages and methods for parallel programming [3, 4, 6–9]. Skeleton programming requires the programmer to write a program using well-defined abstractions (called skeletons) derived from higher-order functions that can be parameterised to execute problem-specific code. Skeletons do not expose to the programmer the complexity of concurrent code, for example synchronization, mutual exclusion and communication. They instead specify abstractly common patterns of parallelism – typically in the form of parametric orchestration patterns – which can be used as program building blocks, and can be composed or nested like constructs of a programming language. A typical skeleton set includes the pipeline, the task farm, map and reduction. There has been a few previous attempts at parallelising Erlang applications, such as parallelising Dialyzer [1], and a suite of Erlang benchmarks [2]. However, none of the attempts exploit structured parallelism in the form of algorithmic skeletons, as outlined in this paper. Parallelism has been exploited in other functional languages, such as Haskell, using a strategies approach for implicit parallelism in GpH [12], and an explicit structured parallelism approach, using algorithmic skeletons, for Eden [10].
GPU ACO, Refactored

Pipe = {pipe, [{farm, [{seqGPU, fun(X) -> lists:map(fun(Y) -> binary_gpu_solve:find_solution(Y) end, X) end, nGPUWorkers}],

{seq, fun(X) -> pick_updateSpawn_list_lists(Num_Workers, Chunk_Size, X) end}]}},
GPU ACO, Refactored

```java
find_solution_gpu(...) ->
E = clu:setup(all),
{ok,Program} = clu:build_source(E, "solve2"),
{ok,Kernel} = cl:create_kernel(Program, "solveKernel"),
Random_Seed = 0,
Tabus = list_to_tuple(lists: duplicate(Num_Jobs, 1)),
Kws =
  map(
    fun(Device) ->
      {ok,Queue} = cl:create_queue(E#cl.context,Device,[]),
      {ok,Local} = cl:get_kernel_workgroup_info(Kernel,Device,
        work_group_size),
      ...
    Kws3 = map(
      fun(K) ->
        {ok,ProcessTimeBuffer} = cl:create_buffer(E#cl.context,[read_only],byte_size(Process_Time)),
        ...
      K#kwork.queue,
      K#kwork.imem,
      0, Nk,
      K#kwork.idata, []),
    ...
      K#kwork { processTimeBuffer=ProcessTimeBuffer ... } } end, Kws),
Bs = map(
  fun(K) ->
    {ok,Bin} = cl:wait(K#kwork.e3),
    cl:release_mem_object(K#kwork.imem),
    cl:release_mem_object(K#kwork.omem),
    cl:release_queue(K#kwork.queue),
    Bin
  end, Kws4),
```

GPU Results

Speedups on GPU for Ant Colony Optimisation

- Speedup on the y-axis.
- Nr SMs Used on the x-axis.
- The graph shows an increasing trend in speedup as the number of SMs used increases.
Heterogeneous Parallel Programming

1. Identify Initial Structure

2. Enumerate Skeleton Configurations

3. Filter Using Cost Model

4. Apply MCTS

5. Choose Optimal Mapping/Configuration

6. Refactor Application

7. Execute

Heterogeneous Machine

CPU

CPU

CPU

GPU

Refactorer with Mappings

... Int main () ...

Farm1 = Farm(f, 8, 2);
Pipe(farm1, GPU(g));
...

Profile Information

Profile Information

Profile Information

3. Filter Using Cost Model

Config. 1

Config. 2

Config. 3

4. Apply MCTS

Config. 1(a)

Config. 1(b)

Config. 2(a)

5. Choose Optimal Mapping/Configuration

Optimal Parallel Configuration With Mappings

CPU

CPU

CPU

GPU

Refactorer
Example: Enumerate Skeleton Configurations for Image Convolution

\[\Delta(r \circ p) \]

\[r \parallel \Delta(p) \]

\[r \circ p \]

\[\Delta(r) \circ p \]

\[r \parallel p \]

\[\Delta(r) \circ \Delta(p) \]

\[r \parallel \Delta(p) \]

\[r \circ \Delta(p) \]

\[\Delta(r) \parallel p \]

\[\Delta(r) \parallel \Delta(p) \]

\[\Delta(r) \parallel p \]

\[\Delta(r) \circ \Delta(p) \]

\[\Delta(r) \circ p \]

\[r \circ \Delta(p) \]

\[\text{Configuration} \quad \text{Est. runtime} \]

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Est. runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r \circ p)</td>
<td>5.6</td>
</tr>
<tr>
<td>(r \parallel p)</td>
<td>3.88</td>
</tr>
<tr>
<td>(\Delta(r) \parallel p)</td>
<td>1.60</td>
</tr>
<tr>
<td>(r \parallel \Delta(p))</td>
<td>4.00</td>
</tr>
<tr>
<td>(\Delta(r) \parallel \Delta(p))</td>
<td>0.40</td>
</tr>
<tr>
<td>(\Delta(r) \parallel \Delta(p))</td>
<td>0.56</td>
</tr>
<tr>
<td>(\Delta(r) \circ \Delta(p))</td>
<td>2.00</td>
</tr>
<tr>
<td>(\Delta(r) \circ p)</td>
<td>2.00</td>
</tr>
<tr>
<td>(r \circ \Delta(p))</td>
<td>5.60</td>
</tr>
</tbody>
</table>

\(r \) : read image file

\(p \) : process image file
Results on Benchmark: Image Convolution

MCTS Mapping \((C, G)\):

\((6, 0) \parallel (0, 3)\)

Speedup 39.12

Best Speedup: 40.91
The best speedup was predicted for $\Delta(r, 6, 0) \parallel \Delta(p, 0, 3)$.
Adding Mapping (2)

- The best speedup was predicted for

\[\Delta(r \parallel p, 5, 5) \]
The best speedup was predicted for
\[\Delta(r, 4, 0) \parallel p_G \]
Conclusions

- New heterogeneous skeletons for Erlang

- New Heterogeneous refactoring approach, semi-automatically introduces openCL bindings, and skeletal configuration

- Initial results for an ant colony optimisation
 - Skeletal, farm with feedback version, 12 speedup
 - GPU version, 26 speedup
Conclusions

- The manycore revolution is upon us
 - Computer hardware is changing very rapidly (more than in the last 50 years)
 - The **megacore** era is here (aka exascale, BIG data)

- Heterogeneity and energy are both important

- Most programming models are too low-level
 - concurrency based
 - need to expose mass parallelism

- Patterns and **functional programming** help with abstraction
 - millions of threads, easily controlled
Conclusions (2)

- Functional programming makes it easy to introduce parallelism
 - (Controlled) side effects means any computation could be parallel
 - Matches pattern-based parallelism
 - Much detail can be abstracted

- Lots of problems can be avoided
 - e.g. Freedom from Deadlock
 - Parallel programs give the same results as sequential ones!

- Automation is very important
 - Refactoring dramatically reduces development time
 (while keeping the programmer in the loop)
 - Machine learning is very promising for determining complex performance settings
Future Work

- Allow further integration into skeletons
 - A living mixture of CPU/GPU components

- Wider range of skeletons
 - Parallel workpools
 - Divide-and-conquer
 - Map-reduce
 - BSP

- More case studies, and from different domains:
 - Physics, computer algebra, ...

- Include dynamic remapping and distributed computing environments
Funded by

- ParaPhrase (EU FP7), Patterns for heterogeneous multicore, €4.2M, 2011-2014
- SCiEnCe (EU FP6), Grid/Cloud/Multicore coordination
 - €3.2M, 2005-2012
- Advance (EU FP7), Multicore streaming
 - €2.7M, 2010-2013
- HPC-GAP (EPSRC), Legacy system on thousands of cores
 - £1.6M, 2010-2014
- Islay (EPSRC), Real-time FPGA streaming implementation
 - £1.4M, 2008-2011
- TACLE: European Cost Action on Timing Analysis
 - €300K, 2012-2015
Some of our Industrial Connections

Mellanox Inc.
Erlang Solutions Ltd
SAP GmbH, Karlsruhe
BAe Systems
Selex Galileo
Biold GmbH, Stuttgart
Philips Healthcare
Software Competence Centre, Hagenberg
Microsoft Research
Well-Typed LLC
ParaPhrase Needs You!

• Please join our mailing list and help grow our user community
 ▪ news items
 ▪ access to free development software
 ▪ chat to the developers
 ▪ free developer workshops
 ▪ bug tracking and fixing
 ▪ Tools for both Erlang and C++

• Subscribe at

 https://mailman.cs.st-andrews.ac.uk/mailman/listinfo/paraphrase-news

• We’re also looking for open source developers...
THANK YOU!

http://www.paraphrase-ict.eu

http://www.project-advance.eu

@paraphrase_fp7