Concurrency + Distribution =
Availability + Scalability

Francesco Cesarini

francesco@erlang-solutions.com
www.erlang-solutions.com

@francescoC SOLUTIONS .“



Chapter 13
Ch 13: Node Architecture

OREILLY"

Designing for

Scalability with




Chapter 13

Support

Ch 13: Distributed Architectures

Ch 14: Systems That Never Stop
15 . Designing for

Ch15; Scal!ng.Out _ Scalability with

Ch 16: Monitoring and Preemptive paicue/Ciizes




Distributed Architectures




Clients

Front-end Node

Logic Node

Service Node




s z W S
RSFIAHN K
RSN NS
CE s;e"e'g” LN KA
N B N> '&“‘35
o AN
RS2
NG
] '//




www.erlang-solutions.com

21600

/a single vnode/partition

Dynamo

a ring with 32 partitions «<2160/4

(2
@
N

(L

hash(<<"artist">>,<<"REM">>)

2|60/2




www.erlang-solutions.com

Dynamo

hash(Sessionld1) hash(Sessionld2)

1*27M60/64° 2*27M64/64 3*27164/64 64 4*2°164/64 63*27184/64 2"@}/ Range

Vnodes

Erlang Nodes






www.erlang-solutions.com

Dynamo




Service
Bus

Service Bus




Peer to
Peer




Peer to
Peer




Clients Networking

———————————————————

———————————————————




Networking

Email Clients




www.erlang-solutions.com

STEPS EVOLVING AROUND DISTRIBUTION

Split up your system's functionality
into manageable, stand-alone
nodes.

Choose a distributed architectural
pattern.
Choose the network protocols your
nodes, node families, and clusters
will use when communicating with
each other.
Define your node interfaces, state
and data model.



Systems That Never
Stop




www.erlang-solutions.col

Fault

Tolerance

Client Client

Request Request Error

Request Request Error/Timeout




Resilience

Client Client

Request1 Error Request2 Reply

Request2 Reply




Reliability

Client Client Client

Request Request Reply

Request Request Reply

Request Request Reply



Sharing Data




www.erlang-solutions.com

Share
Nothing

Client1 Client2 Client1 nknown Client1
Login Request session Login
Login Login Request Unknown Login
session
Unknown

Login Login Request session Login



Buy

Buy

Client
Buy book

Client

Buy train set

Buy

Buy

www.erlang-solutions.com

Shar
Something




Buy

Buy

Client
Buy book

Buy

Buy

Buy train set

Remove

Remove

www.erlang-solutions.com

Shar
Everything

Remove book




Session1

book

Session1

train set

www.erlang-solutions.com

Network
Partitions

Session1

train set
book

Session1




www.erlang-solutions.com

Retr
Strategy

1 Client 2 Client

Request Request Reply

Request Reply Request {duplicate, Reply}




Consistency

Recovery Strategy
exactly
once at least
once at most
once

Availability

Reliability

Sharing Data

share

everything share

something

Availability

share
nothing

www.erlang-solutions.com

Trade-offs




www.erlang-solutions.com

STEPS EVOLVING AROUND AVAILABILITY,
CONSISTENCY & RELIABILITY

For every interface function in your
nodes, you need to pick a retry
strategy.

For all your data and state, pick
your sharing strategy across node

families, clusters and types, taking
into consideration the needs of
your retry strategy.




Scaling Out




Scaling
Vertically




Scaling
Horizontally




Consistency

Recovery Strategy
at most
once at least
once only
once

Scalability

Availability

Sharing Data

share

everything share

something

Scalability

www.erlang-solutions.com

Trade-offs




www.erlang-solutiol

Capamty
Planning

Login Login

Login Login

Sessionl Session2




www.erlang-solutio

Capamty
Planning

Clients
A

System

Reject

Load Regulation

Third Party API




www.erlang-solutions.com

- CAPACITY PLANNING -

Capacity planning is the design phase which guarantees
that your system can withstand the load it was built to
handle, and with time, scaling to handle increased
demand.

No single point of failure
Cluster blueprint for scalability
Load Regulation

Back Pressure

v Vv Vv Vv




Monitoring and
Preemptive Support




Split up your system's functionality
into manageable, stand-alone
nodes.

Decide what distributed
architectural pattern you are going
to use.

Decide what network protocols
your nodes, node families and
clusters will use when.
communicating with each other.
Define your node interfaces, state
and data model.
For every interface function in your
nodes, you need to pick a retry
strategy.



6. For all your data and state, pick
your sharing strategy across node
families, clusters and types, taking
into consideration the needs of
your retry strategy.

7. Reiterate through steps 1, 2, 3,4, 5
& 6 until you have the trade-offs
which suit your specification.

8. Design your cluster blueprint,
looking at node ratios for scaling up
and down.

9. Indentify where to apply back-
pressure and load regulation.

10. Define your O&M approach,
defining system and business
alarms, logs and metrics.




THANK YOU!
Any questions?

francesco@erlang-solutions.com
www.erlang-solutions.com
@francescoC

OREILLY"

www.erlang-solutions.com

Designing for
Scalability with

IMPLEMENTING ROBUST,
FAULT-TOLERANT SYSTEMS

Francesco Cesarini & Steve Vinoski

Discount Code: authd
50% off the Early Release
40% off the printed copy

SOLUTIONS



