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STEPS EVOLVING AROUND DISTRIBUTION

Split up your system's functionality
into manageable, stand-alone
nodes.

Choose a distributed architectural
pattern.
Choose the network protocols your
nodes, node families, and clusters
will use when communicating with
each other.
Define your node interfaces, state
and data model.
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Trade-offs
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STEPS EVOLVING AROUND AVAILABILITY,
CONSISTENCY & RELIABILITY

For every interface function in your
nodes, you need to pick a retry
strategy.

For all your data and state, pick
your sharing strategy across node

families, clusters and types, taking
into consideration the needs of
your retry strategy.




Scaling Out




Scaling
Vertically




Scaling
Horizontally




Consistency

Recovery Strategy
at most
once at least
once only
once

Scalability

Availability

Sharing Data

share

everything share

something

Scalability

www.erlang-solutions.com

Trade-offs




www.erlang-solutiol

Capamty
Planning

Login Login

Login Login

Sessionl Session2




www.erlang-solutio

Capamty
Planning

Clients
A

System

Reject

Load Regulation

Third Party API




www.erlang-solutions.com

- CAPACITY PLANNING -

Capacity planning is the design phase which guarantees
that your system can withstand the load it was built to
handle, and with time, scaling to handle increased
demand.

No single point of failure
Cluster blueprint for scalability
Load Regulation

Back Pressure
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Split up your system's functionality
into manageable, stand-alone
nodes.

Decide what distributed
architectural pattern you are going
to use.

Decide what network protocols
your nodes, node families and
clusters will use when.
communicating with each other.
Define your node interfaces, state
and data model.
For every interface function in your
nodes, you need to pick a retry
strategy.



6. For all your data and state, pick
your sharing strategy across node
families, clusters and types, taking
into consideration the needs of
your retry strategy.

7. Reiterate through steps 1, 2, 3,4, 5
& 6 until you have the trade-offs
which suit your specification.

8. Design your cluster blueprint,
looking at node ratios for scaling up
and down.

9. Indentify where to apply back-
pressure and load regulation.

10. Define your O&M approach,
defining system and business
alarms, logs and metrics.
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