
Diabolic Database Design
don’t try this at home!

Who I am?

• Good question, someone tell me if they find out!

• Building cloud orchestration software for SmartOS (Project-FiFo).

• Love solid technology, Illumos & Erlang.

• Please don’t take everything I say serious, on occasions I deploy humor.

Why?

• Project-FiFo is cloud orchestration

• that means LOTS of servers and VMs

• it is really helpful to get some metrics on how
they work

• existing systems don’t really cut it

What do we build?

• Riak like operations & scale

• Pick the good ideas from Graphite

• Keep it as simple as possible

• ensure lively data

• be open about data loss

Defining ‘a metric’

• measurements reported in periodic intervals

• always the same type

• not an event!

• usually viewed as agregates

• mostly stable

How many metrics a second?

• 5 zones on JPC highio 60.5 (61 GB Ram,
8vCPU, 1 TB Disk, no zfs compression)

• riak_core

• R/N/W=1

• overload with metrics

• 5 nodes (ring_size=64)

How the data flows

TCP

pool/
sup

worker

ring

worker

vnode
proxy

worker

TCP

vnode

Get rid of processes!

• a bit unerlangy

• Send directly from the process handling
the TCP connection

• Per connection back pressure

• no bottleneck on a pool

• no spawning of new processes

Cache the Ring

• Uh oh, this isn’t exactly the truth … it might
have changed but well do we care?

• We don’t ask for the correct ring on every
message

• We hope that most of the time rings don’t
change that often (every few seconds)

• remove ring-server as bottleneck

Introducing bk_dict

• cache the ring

• group the metrics by vnode

• periodically send them in bulk

• will happily loose them if the ring
changes while data is send

How the data flows

TCP

ring vnode
proxy

TCP

vnode

TCP

Cache cache cache

• Cache datapoints in VNode (X consecutieve datapoints)

• Mutable memory buffer not binary.

• Don’t require total order

• flush once a datapoint is ‘behind’ the current cache

• bypass cache if a datapoint is ‘before’ the cache

Danger of the cache

• accept the risk of overwriting data in
edge cases

• overlapping caches after restarts

• memory consumption

• it all goes to flames when the process/
node/beam crashes

Size matters!
• <<Int:56>> looks good?

Size matters!
• <<Int:56>> looks good?

• <<Int:64>> looks better?

Size matters!
• <<Int:56>> looks good?

• <<Int:64>> looks better?

• Nonononononon.

Size matters!
• <<Int:56>> looks good?

• <<Int:64>> looks better?

• Nonononononon.

• BEAM treats:

• 60 bit or less integers as native

• 61 bit or more as bigint (10% slower)

Split IO and Cache

• An IO Process for each VNode (cache)

• Send async as long as the IO-message queue is
not growing out of hand

• Don’t block VNode (cache) with disk IO

• Pass read on directly (use gen_server :reply)

Storing data

1

2
3

4

5

6

7

8
9

Storing data - Tree

1 2

3

4 5

6

7 8

9

Storing data - if only …

• we had a data structure

• optimized for sequential data

• that is simple and well understood

• has constant access times for access and
write

Tree?
Do not put
metrics in a

tree!

How a file is written

• Each file contains a fixed number of points

• each file contains as many metrics as needed

• this turns all reads and writes is serial IO

1 2 3 4 5 6 7 8 9

How many metrics a second?

• ~ 9.000.000 metrics every second

• ~ 1.5-2.000.000 per node scaling linear

Links and stuff

• @heinz_gies / @project_fifo

• DalmatinerDB: https://dalmatiner.io

• Project-FiFo: https://project-fifo.net

• Docs: https://docs.dalmatiner.io

• dFiFo driven public cloud: https://vrocket.io

https://dalmatiner.io
https://project-fifo.net
https://docs.dalmatiner.io
https://vrocket.io

