
Testing Asynchronous APIs
With QuickCheck

Thomas Arts
Quviq AB

QuickCheck in a Nutshell

Properties
Test
case
Test
case
Test
case
Test
case Test case

Minimal
Test case

2

Property-Based Testing

Instead of writing test cases....
they are automatically generated from properties

Useful for
Unit Testing, Component Testing, System Testing

Less work, better testing, more fun

3

From Unit test to Property

Most developers agree that writing unit tests is
useful

…. but also quickly gets boring …

An example:

4

API
take
reset

QuickCheck

API
under
test

A minimal
failing example

5

 ok =
 1 =
 2 =
 3 =
 ok =
 1 =

A Unit Test in Erlang

test_dispenser() ->

Expected
results

reset(),
take(),
take(),
take(),
reset(),
take().

6

State machine model

The generator for testing a sequence of
commands is a state machine specification

The property is that a run of the generated
sequence satisfies all postconditions.

7

Modelling the dispenser

reset take take take

1 2 3

ok 1 2 3

8

State Machine for arbitrary sequence

initial_state() -> undefined.

reset_args(_State) -> [].

reset() -> get("http://localhost:4000/reset").

reset_next(_State, _Result, []) -> 1.

take_pre(State) -> State /= undefined.

take_args(_State) -> [].

take() -> get("http://localhost:4000/take").

take_next(State, _Result, []) -> State + 1.

take_post(State, [], Result) -> eq(Result, State + 1).

reset
take

Live

DEMO

9

A Parallel Unit Test

•  Three possible correct outcomes!

reset

take

take

take

1

2

3
1

3

2
2

3

1

ok

1

2

1

10

Another Parallel Test

30 possible correct outcomes!

reset

take

take

take

take

reset

11

Finding race-conditions

Writing unit tests for concurrent events:
Headache!

Thus, people don’t!

QuickCheck does it for you!

12

Arbitrary	sequences	
prop_dispenser() ->
 ?FORALL(Cmds, parallel_commands(?MODULE),
 begin

{H, S, Res} = run_parallel_commands(?MODULE, Cmds),
pretty_commands(?MODULE, Cmds, {H, S, Res},
 Res == ok)

 end).

Live

DEMO

15	

Concurrency errors

QuickCheck properties:

Property specifies behaviour of any command
sequence

QuickCheck
•  runs the sequences with different threads
•  collect the results
•  checks whether this can be explained from

sequential behaviour

16

Abstraction

Commonly asked question:

Do we need to re-implement the
software as a model?

17

No... not for
real systems

A complete system

How to test project-fifo?

18

project-fifo.net

A complete system

Project-fifo

•  Cloud Orchestration
•  Manage private and public clouds
•  Based on SmartOS / Solaris Containers
•  OSS and Commercial Support

•  Self hosted, Distributed, Highly available,
Eventually consistent

19

Project-fifo

Architecture

20

Mgmt

.

AAA

Agent Agent Agent

API HTTP / REST API

AAA: OAuth2, RBAC

Business logic, database, tracking

Agents to manage physical components

60,000 lines of code

Lets test

Mgmt
.

AAA

Agent Agent Agent

API Create

Th
e

pr
ob

le
m

21

Lets test

Mgmt
.

AAA

Agent Agent Agent

API Create Login

Th
e

pr
ob

le
m

22

Lets test

Mgmt
.

AAA

Agent Agent Agent

API Create Login GET fail

Th
e

pr
ob

le
m

23

This fails, create is asynchronous

Lets test

Mgmt
.

AAA

Agent Agent Agent

API Create Login 3m GET OK

Th
e

pr
ob

le
m

24

Lets test

Mgmt
.

AAA

Agent Agent Agent

API Create Login 3m GET OK

Th
e

pr
ob

le
m

25

•  utterly slow testing
•  hard to test around "just started"
•  forget race condition testing

Asynchronous API

Create Login stop

26

delete

running

deleted

stopped

start

States of one specific VM

waiting

IDEA:
Perform actions
on other VMs
while waiting !

Asynchronous API

Create Login stop

27

delete

running

deleted

stopped

start

polling

Each operation is
waiting before it makes
sense to execute

and add:

sleep

QuickCheck

Running QuickCheck tests

revealed 25 errors... all fixed now J

Timing errors, race conditions, type errors,
incorrect use of library API, error in documentation,
errors in the logic, system limits error, errors in
fault handling...
and coincidently a hardware error

28

A complete system

60,000 lines of code
460 lines of QuickCheck

Any reasonable test suite would contain more lines
of code...
... and find less errors.

 30

