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QuickCheck in a Nutshell Q

N

Minimal
Test case
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Property-Based Testing Q

Instead of writing test cases....
they are automatically generated from properties

Useful for
Unit Testing, Component Testing, System Testing

Less work, better testing, more fun
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From Unit test to Property Q

Most developers agree that writing unit tests is
useful

.... but also quickly gets boring ...

An example: /
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QuickCheck Q

T

A minimal

failing example
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A Unit Test in Erlang

test dispenser() ->

ok = reset(),
1 = take(),
2 = take(),
3 = takel(),
ok = reset(),
1 = take().

Expected

results
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State machine model

The generator for testing a sequence of
commands is a state machine specification

The property is that a run of the generated
sequence satisfies all postconditions.
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State Machine for arbitrary sequence

initial state() -> undefined.

reset args(_ State) -> [].

reset() -> get("http://localhost:4000/reset").

reset next(_State, Result, []) -> 1.

take pre(State) -> State /= undefined.

take args(_State) -> [].

take() -> get("http://localhost:4000/take").

take next(State, Result, []) -> State + 1.

take post(State, [], Result) -> eqg(Result, State + 1).
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A Parallel Unit Test Q
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* Three possible correct outcomes!
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Another Parallel Test Q

J

30 possible correct outcomes!
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Finding race-conditions

Writing unit tests for concurrent events:
Headache!

Thus, people don't!

QuickCheck does it for you!
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Arbitrary sequences

| Live
prop dispenser() ->
?FORALL (Cmds, parallel commands(?MODULE), DEMO
begin

{H, S, Res} = run parallel commands(?MODULE, Cmds),
pretty commands(?MODULE, Cmds, {H, S, Res},
Res == o0k)
end) .



Concurrency errors Q

QuickCheck properties:

Property specifies behaviour of any command
sequence

QuickCheck
* runs the sequences with different threads
 collect the results

« checks whether this can be explained from
sequential behaviour
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Abstraction

Commonly asked question:

Do we need to re-implement the
software as a model?

No... not for
real systems
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A complete system Q

How to test project-fifo?

Release 0.8.0 Happy Hound ‘ PROJECTHFO

Documentation Blog Source Code ssue Tracker Commercial Support

i
L 3
- al

FiFo: Open Source SmartOS Cloud Orchestration

Built for Speed Production Ready Extreme Resilience

project-fifo.net
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A complete system

Project-fifo

* Cloud Orchestration ° °
 Manage private and public clouds

 Based on SmartOS / Solaris Containers
 OSS and Commercial Support

« Self hosted, Distributed, Highly available, [ -'q
Eventually consistent -
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Project-fifo

Architecture

HTTP /R

AAA: OAuth2, RBAC

Business logic, database, tracking

Agents to manage physical components
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The problem

Lets test

QuviQ
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The problem

Lets test
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The problem

Lets test

This fails, create is asynchronous
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The problem

Lets test
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The problem

Lets test
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Asynchronous API Q

delete

States of

‘. deleted
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Asynchronous API

polling
)/h
Se)o—> stopped

@me

deleted

Each operation is
waiting before it makes
sense to execute

and add: m

QuviQ

27



QuickCheck Q

Running QuickCheck tests

revealed 25 errors... all fixed now ©

Timing errors, race conditions, type errors,
incorrect use of library API, error in documentation,

errors in the logic, system limits error, errors In
fault handling...

and coincidently a hardware error
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A complete system

60,000 lines of code
460 lines of QuickCheck °© o o

Any reasonable test suite would contain more lines
of code...

... and find less errors.
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