Quwi

Testing Asynchronous APIs
With QuickCheck

Thomas Arts
Quviq AB

QuviQ

QuickCheck in a Nutshell Q

N

Minimal
Test case

QuviQ 2

Property-Based Testing Q

Instead of writing test cases....
they are automatically generated from properties

Useful for
Unit Testing, Component Testing, System Testing

Less work, better testing, more fun

QuviQ

From Unit test to Property Q

Most developers agree that writing unit tests is
useful

.... but also quickly gets boring ...

An example: /

S
=
—TTN N

<

QuviQ

QuickCheck Q

T

A minimal

failing example

QuviQ

A Unit Test in Erlang

test dispenser() ->

ok = reset(),
1 = take(),
2 = take(),
3 = takel(),
ok = reset(),
1 = take().

Expected

results

QuviQ

State machine model

The generator for testing a sequence of
commands is a state machine specification

The property is that a run of the generated
sequence satisfies all postconditions.

QuviQ

State Machine for arbitrary sequence

initial state() -> undefined.

reset args(_ State) -> [].

reset() -> get("http://localhost:4000/reset").

reset next(_State, Result, []) -> 1.

take pre(State) -> State /= undefined.

take args(_State) -> [].

take() -> get("http://localhost:4000/take").

take next(State, Result, []) -> State + 1.

take post(State, [], Result) -> eqg(Result, State + 1).

QuviQ

Live

DEMO

18S9

9)€]

A Parallel Unit Test Q

J

<« -

2332 l

* Three possible correct outcomes!

QuviQ 10

Another Parallel Test Q

J

30 possible correct outcomes!
QuviQ 11

Finding race-conditions

Writing unit tests for concurrent events:
Headache!

Thus, people don't!

QuickCheck does it for you!

QuviQ

12

Arbitrary sequences

| Live
prop dispenser() ->
?FORALL (Cmds, parallel commands(?MODULE), DEMO
begin

{H, S, Res} = run parallel commands(?MODULE, Cmds),
pretty commands(?MODULE, Cmds, {H, S, Res},
Res == o0k)
end) .

Concurrency errors Q

QuickCheck properties:

Property specifies behaviour of any command
sequence

QuickCheck
* runs the sequences with different threads
 collect the results

« checks whether this can be explained from
sequential behaviour

QuviQ 16

Abstraction

Commonly asked question:

Do we need to re-implement the
software as a model?

No... not for
real systems

QuviQ

17

A complete system Q

How to test project-fifo?

Release 0.8.0 Happy Hound ‘ PROJECTHFO

Documentation Blog Source Code ssue Tracker Commercial Support

i
L 3
- al

FiFo: Open Source SmartOS Cloud Orchestration

Built for Speed Production Ready Extreme Resilience

project-fifo.net

QuviQ 18

A complete system

Project-fifo

* Cloud Orchestration ° °
 Manage private and public clouds

 Based on SmartOS / Solaris Containers
 OSS and Commercial Support

« Self hosted, Distributed, Highly available, [-'q
Eventually consistent -

QuviQ 19

Project-fifo

Architecture

HTTP /R

AAA: OAuth2, RBAC

Business logic, database, tracking

Agents to manage physical components

QuviQ 20

The problem

Lets test

QuviQ

21

The problem

Lets test

QuviQ

22

The problem

Lets test

This fails, create is asynchronous

QuviQ

23

The problem

Lets test

QuviQ

24

The problem

Lets test

QuviQ

25

Asynchronous API Q

delete

States of

‘. deleted

QuviQ 26

Asynchronous API

polling
)/h
Se)o—> stopped

@me

deleted

Each operation is
waiting before it makes
sense to execute

and add: m

QuviQ

27

QuickCheck Q

Running QuickCheck tests

revealed 25 errors... all fixed now ©

Timing errors, race conditions, type errors,
incorrect use of library API, error in documentation,

errors in the logic, system limits error, errors In
fault handling...

and coincidently a hardware error

QuviQ 28

A complete system

60,000 lines of code
460 lines of QuickCheck °© o o

Any reasonable test suite would contain more lines
of code...

... and find less errors.

QuviQ 30

