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Property-Based Testing 

 
Instead of writing test cases.... 
they are automatically generated from properties 
 
Useful for 
Unit Testing, Component Testing, System Testing 
 
Less work, better testing, more fun 
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From Unit test to Property 

Most developers agree that writing unit tests is 
useful 
 

…. but also quickly gets boring … 
 

An example:  
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API 
take 
reset 



QuickCheck 

API 
under 
test 

A minimal 
failing example 
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A Unit Test in Erlang 

test_dispenser() -> 
  

Expected 
results 

reset(), 
take(), 
take(), 
take(), 
reset(), 
take(). 
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State machine model 

The generator for testing a sequence of 
commands is a state machine specification 
 
The property is that a run of the generated 
sequence satisfies all postconditions. 
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Modelling the dispenser 

reset take take take 

1 2 3 

ok              1                2               3 
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State Machine for arbitrary sequence 

initial_state() ->   undefined.

reset_args(_State) ->  [].

reset() -> get("http://localhost:4000/reset").

reset_next(_State, _Result, []) -> 1.

take_pre(State) ->  State /= undefined.

take_args(_State) ->  [].

take() -> get("http://localhost:4000/take").

take_next(State, _Result, []) -> State + 1.

take_post(State, [], Result) ->  eq(Result, State + 1).

  
 

reset 
take 

Live 
 

DEMO 
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A Parallel Unit Test 

•  Three possible correct outcomes! 
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Another Parallel Test 

30 possible correct outcomes! 

reset 

take 

take 

take 

take 

reset 

11 



Finding race-conditions 

Writing unit tests for concurrent events: 
Headache! 
 
Thus, people don’t! 
 
QuickCheck does it for you! 
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Arbitrary	sequences	
prop_dispenser() ->
  ?FORALL(Cmds, parallel_commands(?MODULE),
    begin

{H, S, Res} = run_parallel_commands(?MODULE, Cmds),
pretty_commands(?MODULE, Cmds, {H, S, Res},
                Res == ok)

    end).

Live 
 

DEMO 
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Concurrency errors 

QuickCheck properties: 
 
Property specifies behaviour of any command 
sequence 
 
QuickCheck  
•  runs the sequences with different threads 
•  collect the results 
•  checks whether this can be explained from 

sequential behaviour 
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Abstraction 

Commonly asked question: 
 

Do we need to re-implement the 
software as a model? 
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No... not for 
real systems 



A complete system 

How to test project-fifo? 
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project-fifo.net 



A complete system 

Project-fifo 
 
•  Cloud Orchestration 
•  Manage private and public clouds 
•  Based on SmartOS / Solaris Containers 
•  OSS and Commercial Support 

•  Self hosted, Distributed, Highly available, 
Eventually consistent 
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Project-fifo 

Architecture 

20 

 
Mgmt

. 

AAA 

Agent Agent Agent 

API HTTP / REST API 

AAA: OAuth2, RBAC 

Business logic, database, tracking 

Agents to manage physical components 

60,000 lines of code 



Lets test 

Mgmt
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Lets test 
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Lets test 

Mgmt
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This fails, create is asynchronous 



Lets test 

Mgmt
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Lets test 
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•  utterly slow testing 
•  hard to test around "just started" 
•  forget race condition testing 



Asynchronous API 

Create Login stop 

26 

delete 

running 

deleted 

stopped 

start 

States of one specific VM 
 

waiting 

IDEA: 
Perform actions 
on other VMs 
while waiting ! 



Asynchronous API 

Create Login stop 
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delete 

running 

deleted 

stopped 

start 

polling 

Each operation is 
waiting before it makes 
sense to execute 
 
and add: 
 

sleep 



QuickCheck 

Running QuickCheck tests 
 
revealed 25 errors... all fixed now J 
 
Timing errors, race conditions, type errors, 
incorrect use of library API, error in documentation, 
errors in the logic, system limits error, errors in 
fault handling... 
and coincidently a hardware error 
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A complete system 

 
60,000 lines of code 
460 lines of QuickCheck 
 
Any reasonable test suite would contain more lines 
of code... 
... and find less errors. 
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