
Scientific Workflow DSLs
What are they for anyway?

Twitter: @irina_guberman

I work for HERE, name invented by the same marketing geniuses that invented the “Swedish fish”. Trying googling it. Try telling people where you work. It’s a lot of
fun… HERE? Where is that? But hey, German car manufacturers: BMW, Audi, and Daimler acquired us nonetheless. The old name was Navteq, the one and only
electronic mapping company around for quite a while (since 1985)… until Google became a major competitor. Google is a good thing, nothing drives quality like good
competition. And BTW, if you’re using Google Maps on your iPhone or Android, do yourself a favor and download HERE maps instead. You will quickly realize — you’ve
been missing out.

While navigable digital maps is HERE’s primary business right now, what is very exciting for HERE future is autonomous driving cars. With that kind of ambition, simply
navigable maps with meter resolution won’t do. What’s essential is pre-loaded High Definition maps that a car would be using along with the real-time data.

So high definition maps. Satellite and aerial imagery is a good starting point there. However, what really makes them possible is a fleet of cars equipped with GPS,
cameras and LiDAR (“technology that measures distance by illuminating a target with a laser light”). According to numerous sources, LiDAR stands for Light Detection
And Ranging. According to Wikipedia, that’s a myth — it was actually coined as a portmanteau of "light" and “radar". The sensors on these cars (called TRUE cars)
were developed by John Ristevski the head of Reality Capture and Processing department, the department where I work.

So high definition maps. Satellite and aerial imagery is a good starting point there. However, what really makes them possible is a fleet of cars equipped with GPS,
cameras and LiDAR (“technology that measures distance by illuminating a target with a laser light”). According to numerous sources, LiDAR stands for Light Detection
And Ranging. According to Wikipedia, that’s a myth — it was actually coined as a portmanteau of "light" and “radar". The sensors on these cars (called TRUE cars)
were developed by John Ristevski the head of Reality Capture and Processing department, the department where I work.

LiDAR image capturing

So high definition maps. Satellite and aerial imagery is a good starting point there. However, what really makes them possible is a fleet of cars equipped with GPS,
cameras and LiDAR (“technology that measures distance by illuminating a target with a laser light”). According to numerous sources, LiDAR stands for Light Detection
And Ranging. According to Wikipedia, that’s a myth — it was actually coined as a portmanteau of "light" and “radar". The sensors on these cars (called TRUE cars)
were developed by John Ristevski the head of Reality Capture and Processing department, the department where I work.

LiDAR image capturing
“technology that measures distance by illuminating a target with a laser light”

So high definition maps. Satellite and aerial imagery is a good starting point there. However, what really makes them possible is a fleet of cars equipped with GPS,
cameras and LiDAR (“technology that measures distance by illuminating a target with a laser light”). According to numerous sources, LiDAR stands for Light Detection
And Ranging. According to Wikipedia, that’s a myth — it was actually coined as a portmanteau of "light" and “radar". The sensors on these cars (called TRUE cars)
were developed by John Ristevski the head of Reality Capture and Processing department, the department where I work.

LiDAR image capturing

http://360.here.com/2015/03/24/lidar/
“technology that measures distance by illuminating a target with a laser light”

So high definition maps. Satellite and aerial imagery is a good starting point there. However, what really makes them possible is a fleet of cars equipped with GPS,
cameras and LiDAR (“technology that measures distance by illuminating a target with a laser light”). According to numerous sources, LiDAR stands for Light Detection
And Ranging. According to Wikipedia, that’s a myth — it was actually coined as a portmanteau of "light" and “radar". The sensors on these cars (called TRUE cars)
were developed by John Ristevski the head of Reality Capture and Processing department, the department where I work.

http://360.here.com/2015/03/24/lidar/

“When the car is in motion, the lidar system—a cylinder about the size of a
soda can—spins around, shooting out 32 laser beams and analyzing the
light that bounces back. It collects 700,000 points per second"

http://www.wired.com/2014/12/nokia-here-autonomous-car-maps/

After a car drives for a while, it accumulates dozens of Gigabytes of Lidar and image data to be processed. We get lidar and camera data from these cars driving all over
the world.

Which after going through a rather complicated series of Machine Learning algorithms developed by various computer vision teams at HERE and their collective effort
turns the drive data from this kind of image (next page)

http://www.wired.com/2014/12/nokia-here-autonomous-car-maps/

 into this kind of a neat image (Next page):

This kind of High definition map with a few centimeter precision is what driverless cars can actually use.

The original drive data ends up in various Reality Capture and Processing teams that will process different aspects of the data: lidar calibration, optimization, street sign
detection, it’s a much longer list… Some of these processing stages are completely independent, some depend on the results of the stage that ran before, so what we
get here is a pretty complex data processing pipeline, or we can call it a scientific workflow. Members of these teams, typically ML PhDs, are busy enough developing
computer vision algorithms not to worry a lot about where and how these things will be running, but considering the amount of data going through the pipeline and the
amount of processing power it requires, that in itself is quite a challenge, the challenge called Hight Throughput Computing. So who are the lucky bunch in charge of
this honorable responsibility? That’s my team, Architecture & Infrastructure team. We ask the PhD colleagues to put their ML algorithms into a docker container and we
take it from there.

So HTC challenges: #1 is Cost -> Efficient use of computing and memory resources -> Resilience, on one hand. Efficient use of developer resources and code
maintainability on the other.

HTC

The original drive data ends up in various Reality Capture and Processing teams that will process different aspects of the data: lidar calibration, optimization, street sign
detection, it’s a much longer list… Some of these processing stages are completely independent, some depend on the results of the stage that ran before, so what we
get here is a pretty complex data processing pipeline, or we can call it a scientific workflow. Members of these teams, typically ML PhDs, are busy enough developing
computer vision algorithms not to worry a lot about where and how these things will be running, but considering the amount of data going through the pipeline and the
amount of processing power it requires, that in itself is quite a challenge, the challenge called Hight Throughput Computing. So who are the lucky bunch in charge of
this honorable responsibility? That’s my team, Architecture & Infrastructure team. We ask the PhD colleagues to put their ML algorithms into a docker container and we
take it from there.

So HTC challenges: #1 is Cost -> Efficient use of computing and memory resources -> Resilience, on one hand. Efficient use of developer resources and code
maintainability on the other.

HTC
Cost

The original drive data ends up in various Reality Capture and Processing teams that will process different aspects of the data: lidar calibration, optimization, street sign
detection, it’s a much longer list… Some of these processing stages are completely independent, some depend on the results of the stage that ran before, so what we
get here is a pretty complex data processing pipeline, or we can call it a scientific workflow. Members of these teams, typically ML PhDs, are busy enough developing
computer vision algorithms not to worry a lot about where and how these things will be running, but considering the amount of data going through the pipeline and the
amount of processing power it requires, that in itself is quite a challenge, the challenge called Hight Throughput Computing. So who are the lucky bunch in charge of
this honorable responsibility? That’s my team, Architecture & Infrastructure team. We ask the PhD colleagues to put their ML algorithms into a docker container and we
take it from there.

So HTC challenges: #1 is Cost -> Efficient use of computing and memory resources -> Resilience, on one hand. Efficient use of developer resources and code
maintainability on the other.

HTC
Cost

Efficiency

The original drive data ends up in various Reality Capture and Processing teams that will process different aspects of the data: lidar calibration, optimization, street sign
detection, it’s a much longer list… Some of these processing stages are completely independent, some depend on the results of the stage that ran before, so what we
get here is a pretty complex data processing pipeline, or we can call it a scientific workflow. Members of these teams, typically ML PhDs, are busy enough developing
computer vision algorithms not to worry a lot about where and how these things will be running, but considering the amount of data going through the pipeline and the
amount of processing power it requires, that in itself is quite a challenge, the challenge called Hight Throughput Computing. So who are the lucky bunch in charge of
this honorable responsibility? That’s my team, Architecture & Infrastructure team. We ask the PhD colleagues to put their ML algorithms into a docker container and we
take it from there.

So HTC challenges: #1 is Cost -> Efficient use of computing and memory resources -> Resilience, on one hand. Efficient use of developer resources and code
maintainability on the other.

HTC
Cost

Fault Tolerance

Efficiency

The original drive data ends up in various Reality Capture and Processing teams that will process different aspects of the data: lidar calibration, optimization, street sign
detection, it’s a much longer list… Some of these processing stages are completely independent, some depend on the results of the stage that ran before, so what we
get here is a pretty complex data processing pipeline, or we can call it a scientific workflow. Members of these teams, typically ML PhDs, are busy enough developing
computer vision algorithms not to worry a lot about where and how these things will be running, but considering the amount of data going through the pipeline and the
amount of processing power it requires, that in itself is quite a challenge, the challenge called Hight Throughput Computing. So who are the lucky bunch in charge of
this honorable responsibility? That’s my team, Architecture & Infrastructure team. We ask the PhD colleagues to put their ML algorithms into a docker container and we
take it from there.

So HTC challenges: #1 is Cost -> Efficient use of computing and memory resources -> Resilience, on one hand. Efficient use of developer resources and code
maintainability on the other.

HTC
Cost

Fault Tolerance

Big Data Access

Efficiency

The original drive data ends up in various Reality Capture and Processing teams that will process different aspects of the data: lidar calibration, optimization, street sign
detection, it’s a much longer list… Some of these processing stages are completely independent, some depend on the results of the stage that ran before, so what we
get here is a pretty complex data processing pipeline, or we can call it a scientific workflow. Members of these teams, typically ML PhDs, are busy enough developing
computer vision algorithms not to worry a lot about where and how these things will be running, but considering the amount of data going through the pipeline and the
amount of processing power it requires, that in itself is quite a challenge, the challenge called Hight Throughput Computing. So who are the lucky bunch in charge of
this honorable responsibility? That’s my team, Architecture & Infrastructure team. We ask the PhD colleagues to put their ML algorithms into a docker container and we
take it from there.

So HTC challenges: #1 is Cost -> Efficient use of computing and memory resources -> Resilience, on one hand. Efficient use of developer resources and code
maintainability on the other.

Cost

We don’t have any data centers. Everything we do is done in AWS. Cost -> Spot instances… but they go away without warning. Even if with a warning… they just go
away. Warning won’t help if you don’t know how to take advantage of intermediate results and continue on with the job on another spot instance.

Save intermediate results, make work reentrant.

Distribution is a great idea, but not always possible with ML algorithms, they sometimes need to process everything at once, just by the nature of the algorithm, and
sometimes they depend on existing libraries which we can’t modify.

Cost

AWS Spot Instances

We don’t have any data centers. Everything we do is done in AWS. Cost -> Spot instances… but they go away without warning. Even if with a warning… they just go
away. Warning won’t help if you don’t know how to take advantage of intermediate results and continue on with the job on another spot instance.

Save intermediate results, make work reentrant.

Distribution is a great idea, but not always possible with ML algorithms, they sometimes need to process everything at once, just by the nature of the algorithm, and
sometimes they depend on existing libraries which we can’t modify.

Cost

AWS Spot Instances

Keep work as short as possible.

We don’t have any data centers. Everything we do is done in AWS. Cost -> Spot instances… but they go away without warning. Even if with a warning… they just go
away. Warning won’t help if you don’t know how to take advantage of intermediate results and continue on with the job on another spot instance.

Save intermediate results, make work reentrant.

Distribution is a great idea, but not always possible with ML algorithms, they sometimes need to process everything at once, just by the nature of the algorithm, and
sometimes they depend on existing libraries which we can’t modify.

Cost

AWS Spot Instances

Keep work as short as possible.

Periodically save results

We don’t have any data centers. Everything we do is done in AWS. Cost -> Spot instances… but they go away without warning. Even if with a warning… they just go
away. Warning won’t help if you don’t know how to take advantage of intermediate results and continue on with the job on another spot instance.

Save intermediate results, make work reentrant.

Distribution is a great idea, but not always possible with ML algorithms, they sometimes need to process everything at once, just by the nature of the algorithm, and
sometimes they depend on existing libraries which we can’t modify.

Cost

AWS Spot Instances

Keep work as short as possible.

Periodically save results

Distribute work whenever possible

We don’t have any data centers. Everything we do is done in AWS. Cost -> Spot instances… but they go away without warning. Even if with a warning… they just go
away. Warning won’t help if you don’t know how to take advantage of intermediate results and continue on with the job on another spot instance.

Save intermediate results, make work reentrant.

Distribution is a great idea, but not always possible with ML algorithms, they sometimes need to process everything at once, just by the nature of the algorithm, and
sometimes they depend on existing libraries which we can’t modify.

Distribute work whenever possible

Distribute work! Fun stuff. But what about those dozens of gigabytes of drive data that the algorithms have to operate on???

Keep your data separate from the spot instances. Ideally, use spot instance CPU cycles, but keep the data somewhere they all can access it. So you don’t have to copy
inputs when you bring spot instance up and you don’t loose any results when it goes away prematurely. And in this case, Distributed File System is our great friend.

Distribute work whenever possible

What about huge data?

Distribute work! Fun stuff. But what about those dozens of gigabytes of drive data that the algorithms have to operate on???

Keep your data separate from the spot instances. Ideally, use spot instance CPU cycles, but keep the data somewhere they all can access it. So you don’t have to copy
inputs when you bring spot instance up and you don’t loose any results when it goes away prematurely. And in this case, Distributed File System is our great friend.

Distribute work whenever possible

What about huge data?

Distribute work! Fun stuff. But what about those dozens of gigabytes of drive data that the algorithms have to operate on???

Keep your data separate from the spot instances. Ideally, use spot instance CPU cycles, but keep the data somewhere they all can access it. So you don’t have to copy
inputs when you bring spot instance up and you don’t loose any results when it goes away prematurely. And in this case, Distributed File System is our great friend.

AWS EFS

AWS EFS

AWS EFS

AWS EFS

UNAVAILABLE

GlusterFS

Scalable, general-purpose storage platform POSIX-y Distributed File System

Object storage (swift) Distributed block storage (qemu) Flexible storage (libgfapi)

No Metadata Server

Heterogeneous Commodity Hardware

Standards-Based – Clients, Applications, Networks

Flexible and Agile Scaling

Capacity – Petabytes and beyond Performance – Thousands of Clients.

Available distribution options: distributed, replicated, striped, replicated striped.

Following volume types are supported in glusterfs:

a) Distribute

b) Stripe

c) Replication

d) Distributed Replicate

e) Striped Replicate

f) Distributed Striped Replicate

Software only, runs on commodity hardware

No external metadata servers

GlusterFS

$$$

Scalable, general-purpose storage platform POSIX-y Distributed File System

Object storage (swift) Distributed block storage (qemu) Flexible storage (libgfapi)

No Metadata Server

Heterogeneous Commodity Hardware

Standards-Based – Clients, Applications, Networks

Flexible and Agile Scaling

Capacity – Petabytes and beyond Performance – Thousands of Clients.

Available distribution options: distributed, replicated, striped, replicated striped.

Following volume types are supported in glusterfs:

a) Distribute

b) Stripe

c) Replication

d) Distributed Replicate

e) Striped Replicate

f) Distributed Striped Replicate

Software only, runs on commodity hardware

No external metadata servers

GlusterFS

https://gluster.readthedocs.org/en/latest/presentations/
GlusterFS_Architecture_&_Roadmap-Vijay_Bellur-LinuxCon_EU_2013.pdf

$$$

Scalable, general-purpose storage platform POSIX-y Distributed File System

Object storage (swift) Distributed block storage (qemu) Flexible storage (libgfapi)

No Metadata Server

Heterogeneous Commodity Hardware

Standards-Based – Clients, Applications, Networks

Flexible and Agile Scaling

Capacity – Petabytes and beyond Performance – Thousands of Clients.

Available distribution options: distributed, replicated, striped, replicated striped.

Following volume types are supported in glusterfs:

a) Distribute

b) Stripe

c) Replication

d) Distributed Replicate

e) Striped Replicate

f) Distributed Striped Replicate

Software only, runs on commodity hardware

No external metadata servers

https://gluster.readthedocs.org/en/latest/presentations/GlusterFS_Architecture_&_Roadmap-Vijay_Bellur-LinuxCon_EU_2013.pdf

So GlusterFS is much pricier than EFS would’ve been and it’s much pricier than just a simple EBS volume attached to a spot instance. Well, maybe it will prove to be
negligible in the larger scheme of things maybe it won’t be. We’re in an experimental state of things and we’re playing with our options. If for some reason we decide to
not use Gluster FS and just go with simple EBS attach/reattach, we’ll also have to un-distribute processing of the stages that would’ve been otherwise perfectly
distributable, or else — we’ll end up re-implementing some semblance of a DFS ourselves. Too messy and time consuming to bother with. And un-distribute might be
ok if it saves us a lot of money. And maybe EFS will become available at some point and some brave hearts will even use it in their production env before we do.

The reason why I’m bringing up the challenges and potential fluidity of our architecture and demonstrating to you all these scenarios is actually not to educate you about
all this stuff, though if you found it interesting — awesome! If you didn’t — thanks for your patience! The reason is — we run scientific workflows on top of it. That is
running complexity on top of complexity. Equivalent of entering a perfect storm.

So GlusterFS is much pricier than EFS would’ve been and it’s much pricier than just a simple EBS volume attached to a spot instance. Well, maybe it will prove to be
negligible in the larger scheme of things maybe it won’t be. We’re in an experimental state of things and we’re playing with our options. If for some reason we decide to
not use Gluster FS and just go with simple EBS attach/reattach, we’ll also have to un-distribute processing of the stages that would’ve been otherwise perfectly
distributable, or else — we’ll end up re-implementing some semblance of a DFS ourselves. Too messy and time consuming to bother with. And un-distribute might be
ok if it saves us a lot of money. And maybe EFS will become available at some point and some brave hearts will even use it in their production env before we do.

The reason why I’m bringing up the challenges and potential fluidity of our architecture and demonstrating to you all these scenarios is actually not to educate you about
all this stuff, though if you found it interesting — awesome! If you didn’t — thanks for your patience! The reason is — we run scientific workflows on top of it. That is
running complexity on top of complexity. Equivalent of entering a perfect storm.

So GlusterFS is much pricier than EFS would’ve been and it’s much pricier than just a simple EBS volume attached to a spot instance. Well, maybe it will prove to be
negligible in the larger scheme of things maybe it won’t be. We’re in an experimental state of things and we’re playing with our options. If for some reason we decide to
not use Gluster FS and just go with simple EBS attach/reattach, we’ll also have to un-distribute processing of the stages that would’ve been otherwise perfectly
distributable, or else — we’ll end up re-implementing some semblance of a DFS ourselves. Too messy and time consuming to bother with. And un-distribute might be
ok if it saves us a lot of money. And maybe EFS will become available at some point and some brave hearts will even use it in their production env before we do.

The reason why I’m bringing up the challenges and potential fluidity of our architecture and demonstrating to you all these scenarios is actually not to educate you about
all this stuff, though if you found it interesting — awesome! If you didn’t — thanks for your patience! The reason is — we run scientific workflows on top of it. That is
running complexity on top of complexity. Equivalent of entering a perfect storm.

Spot
Instance

So GlusterFS is much pricier than EFS would’ve been and it’s much pricier than just a simple EBS volume attached to a spot instance. Well, maybe it will prove to be
negligible in the larger scheme of things maybe it won’t be. We’re in an experimental state of things and we’re playing with our options. If for some reason we decide to
not use Gluster FS and just go with simple EBS attach/reattach, we’ll also have to un-distribute processing of the stages that would’ve been otherwise perfectly
distributable, or else — we’ll end up re-implementing some semblance of a DFS ourselves. Too messy and time consuming to bother with. And un-distribute might be
ok if it saves us a lot of money. And maybe EFS will become available at some point and some brave hearts will even use it in their production env before we do.

The reason why I’m bringing up the challenges and potential fluidity of our architecture and demonstrating to you all these scenarios is actually not to educate you about
all this stuff, though if you found it interesting — awesome! If you didn’t — thanks for your patience! The reason is — we run scientific workflows on top of it. That is
running complexity on top of complexity. Equivalent of entering a perfect storm.

So GlusterFS is much pricier than EFS would’ve been and it’s much pricier than just a simple EBS volume attached to a spot instance. Well, maybe it will prove to be
negligible in the larger scheme of things maybe it won’t be. We’re in an experimental state of things and we’re playing with our options. If for some reason we decide to
not use Gluster FS and just go with simple EBS attach/reattach, we’ll also have to un-distribute processing of the stages that would’ve been otherwise perfectly
distributable, or else — we’ll end up re-implementing some semblance of a DFS ourselves. Too messy and time consuming to bother with. And un-distribute might be
ok if it saves us a lot of money. And maybe EFS will become available at some point and some brave hearts will even use it in their production env before we do.

The reason why I’m bringing up the challenges and potential fluidity of our architecture and demonstrating to you all these scenarios is actually not to educate you about
all this stuff, though if you found it interesting — awesome! If you didn’t — thanks for your patience! The reason is — we run scientific workflows on top of it. That is
running complexity on top of complexity. Equivalent of entering a perfect storm.

Spot
Instance

So GlusterFS is much pricier than EFS would’ve been and it’s much pricier than just a simple EBS volume attached to a spot instance. Well, maybe it will prove to be
negligible in the larger scheme of things maybe it won’t be. We’re in an experimental state of things and we’re playing with our options. If for some reason we decide to
not use Gluster FS and just go with simple EBS attach/reattach, we’ll also have to un-distribute processing of the stages that would’ve been otherwise perfectly
distributable, or else — we’ll end up re-implementing some semblance of a DFS ourselves. Too messy and time consuming to bother with. And un-distribute might be
ok if it saves us a lot of money. And maybe EFS will become available at some point and some brave hearts will even use it in their production env before we do.

The reason why I’m bringing up the challenges and potential fluidity of our architecture and demonstrating to you all these scenarios is actually not to educate you about
all this stuff, though if you found it interesting — awesome! If you didn’t — thanks for your patience! The reason is — we run scientific workflows on top of it. That is
running complexity on top of complexity. Equivalent of entering a perfect storm.

So GlusterFS is much pricier than EFS would’ve been and it’s much pricier than just a simple EBS volume attached to a spot instance. Well, maybe it will prove to be
negligible in the larger scheme of things maybe it won’t be. We’re in an experimental state of things and we’re playing with our options. If for some reason we decide to
not use Gluster FS and just go with simple EBS attach/reattach, we’ll also have to un-distribute processing of the stages that would’ve been otherwise perfectly
distributable, or else — we’ll end up re-implementing some semblance of a DFS ourselves. Too messy and time consuming to bother with. And un-distribute might be
ok if it saves us a lot of money. And maybe EFS will become available at some point and some brave hearts will even use it in their production env before we do.

The reason why I’m bringing up the challenges and potential fluidity of our architecture and demonstrating to you all these scenarios is actually not to educate you about
all this stuff, though if you found it interesting — awesome! If you didn’t — thanks for your patience! The reason is — we run scientific workflows on top of it. That is
running complexity on top of complexity. Equivalent of entering a perfect storm.

Spot
Instance

So GlusterFS is much pricier than EFS would’ve been and it’s much pricier than just a simple EBS volume attached to a spot instance. Well, maybe it will prove to be
negligible in the larger scheme of things maybe it won’t be. We’re in an experimental state of things and we’re playing with our options. If for some reason we decide to
not use Gluster FS and just go with simple EBS attach/reattach, we’ll also have to un-distribute processing of the stages that would’ve been otherwise perfectly
distributable, or else — we’ll end up re-implementing some semblance of a DFS ourselves. Too messy and time consuming to bother with. And un-distribute might be
ok if it saves us a lot of money. And maybe EFS will become available at some point and some brave hearts will even use it in their production env before we do.

The reason why I’m bringing up the challenges and potential fluidity of our architecture and demonstrating to you all these scenarios is actually not to educate you about
all this stuff, though if you found it interesting — awesome! If you didn’t — thanks for your patience! The reason is — we run scientific workflows on top of it. That is
running complexity on top of complexity. Equivalent of entering a perfect storm.

Scientific Workflows

Scientific workflows can get very complex. For some reason when I think about scientific workflows, this picture I took in a cave in Branson, Missouri always comes to
mind. All these cascading map-reduces-feeding into more cascading map-reduces. If you don’t get what this cave picture has to do with scientific workflows. Here is
maybe a better example: Invocation graph for variant calling workflow I stole from Cuneiform paper. This stuff is complex, so if you’re a scientist involved in creating the
workflow, you have enough to worry about not to worry about how it will be distributed and how that part works. You need to abstract the backend part away so you
can focus on your stuff. Or even if you’re an architect helping out the scientists. You need to separate the architecture concerns and the workflow logic otherwise you’ll
end with a huge code-mess that’s very difficult to support and troubleshoot. And lets say a decision to un-distribute a part of your workflow, whether based on your
architecture-cost concerns or because it somehow messes up your results, it should be a matter of a small code-change in your workflow code. These things are
actually sometimes very difficult to decide, so at least it shouldn’t a pain in the neck to implement once your direction is clear.

Scientific Workflows

Scientific workflows can get very complex. For some reason when I think about scientific workflows, this picture I took in a cave in Branson, Missouri always comes to
mind. All these cascading map-reduces-feeding into more cascading map-reduces. If you don’t get what this cave picture has to do with scientific workflows. Here is
maybe a better example: Invocation graph for variant calling workflow I stole from Cuneiform paper. This stuff is complex, so if you’re a scientist involved in creating the
workflow, you have enough to worry about not to worry about how it will be distributed and how that part works. You need to abstract the backend part away so you
can focus on your stuff. Or even if you’re an architect helping out the scientists. You need to separate the architecture concerns and the workflow logic otherwise you’ll
end with a huge code-mess that’s very difficult to support and troubleshoot. And lets say a decision to un-distribute a part of your workflow, whether based on your
architecture-cost concerns or because it somehow messes up your results, it should be a matter of a small code-change in your workflow code. These things are
actually sometimes very difficult to decide, so at least it shouldn’t a pain in the neck to implement once your direction is clear.

Scientific Workflows

Scientific workflows can get very complex. For some reason when I think about scientific workflows, this picture I took in a cave in Branson, Missouri always comes to
mind. All these cascading map-reduces-feeding into more cascading map-reduces. If you don’t get what this cave picture has to do with scientific workflows. Here is
maybe a better example: Invocation graph for variant calling workflow I stole from Cuneiform paper. This stuff is complex, so if you’re a scientist involved in creating the
workflow, you have enough to worry about not to worry about how it will be distributed and how that part works. You need to abstract the backend part away so you
can focus on your stuff. Or even if you’re an architect helping out the scientists. You need to separate the architecture concerns and the workflow logic otherwise you’ll
end with a huge code-mess that’s very difficult to support and troubleshoot. And lets say a decision to un-distribute a part of your workflow, whether based on your
architecture-cost concerns or because it somehow messes up your results, it should be a matter of a small code-change in your workflow code. These things are
actually sometimes very difficult to decide, so at least it shouldn’t a pain in the neck to implement once your direction is clear.

Scientific Workflows

Scientific workflows can get very complex. For some reason when I think about scientific workflows, this picture I took in a cave in Branson, Missouri always comes to
mind. All these cascading map-reduces-feeding into more cascading map-reduces. If you don’t get what this cave picture has to do with scientific workflows. Here is
maybe a better example: Invocation graph for variant calling workflow I stole from Cuneiform paper. This stuff is complex, so if you’re a scientist involved in creating the
workflow, you have enough to worry about not to worry about how it will be distributed and how that part works. You need to abstract the backend part away so you
can focus on your stuff. Or even if you’re an architect helping out the scientists. You need to separate the architecture concerns and the workflow logic otherwise you’ll
end with a huge code-mess that’s very difficult to support and troubleshoot. And lets say a decision to un-distribute a part of your workflow, whether based on your
architecture-cost concerns or because it somehow messes up your results, it should be a matter of a small code-change in your workflow code. These things are
actually sometimes very difficult to decide, so at least it shouldn’t a pain in the neck to implement once your direction is clear.

Scientific Workflows

http://ceur-ws.org/Vol-1330/paper-03.pdf

Scientific workflows can get very complex. For some reason when I think about scientific workflows, this picture I took in a cave in Branson, Missouri always comes to
mind. All these cascading map-reduces-feeding into more cascading map-reduces. If you don’t get what this cave picture has to do with scientific workflows. Here is
maybe a better example: Invocation graph for variant calling workflow I stole from Cuneiform paper. This stuff is complex, so if you’re a scientist involved in creating the
workflow, you have enough to worry about not to worry about how it will be distributed and how that part works. You need to abstract the backend part away so you
can focus on your stuff. Or even if you’re an architect helping out the scientists. You need to separate the architecture concerns and the workflow logic otherwise you’ll
end with a huge code-mess that’s very difficult to support and troubleshoot. And lets say a decision to un-distribute a part of your workflow, whether based on your
architecture-cost concerns or because it somehow messes up your results, it should be a matter of a small code-change in your workflow code. These things are
actually sometimes very difficult to decide, so at least it shouldn’t a pain in the neck to implement once your direction is clear.

http://ceur-ws.org/Vol-1330/paper-03.pdf

CUNEIFORM

http://www.erlang-factory.com/berlin2015/jorgen-brandt

So one gloomy cloudy winter Sunday in Chicago I am running some very long-running, boring, and clumsy shell scripts which in turn are invoking all the fascinating stuff
our lidar-and-image-processing teams create. And to entertain myself somehow I browse through my twitter feed and I run into a link to Berlin Erlang Factory Lite talk by
Jörgen Brandt, Scalable Workflow Languages Expert. Cuneiform: A Functional Workflow Language Implementation in Erlang. So I watch the talk, I read up about it to
understand what it’s all about and slowly start getting fascinated. I feel like the sun is coming out and the winter is not so bad and life is not so bad either! There are
other workflow DSLs out there and they didn’t yet appeal to me, but this one definitely stands out.

http://www.erlang-factory.com/berlin2015/jorgen-brandt

1. I don’t think I have to do much work to convince this audience about “Why Functional Programming Matters”. I think someone in this conference already took care of
this part ;)

2. Erlang. So, it can be trusted not to be the one thin abstraction layer on top of everything else that makes things much easier to develop and maintain, but then
causes trouble in production — thank you very much! We have plenty of other reasons to fail, like hardware issues and such, we don’t want the DSL to be the cause of
problems. Even it might have bugs initially, I know they can be fixed and the implementation can quickly become bulletproof, and even if support of it is poor — I can fix it
myself! But, support isn’t poor, Joergen and his cuneiform colleagues are working really hard on this thing. Just like Phoenix and Elixir, Cuneiform has awesome
support, at least in my experience. Though Erlang implementation is not production-ready at the moment, but it’s very quickly getting there. It was originally written in
Java, and because Java, IMHO, isn’t the most suitable language for implementing a DSL, nor it is the best choice for supervising backend progress, the code base is a
huge mess — at least comparing to Erlang. Once rewritten in Eralng it resulted in 80% less code.

3. And what really did it for me — one of the backends it supports is HTCondor! What is HTCondor. That’s the the job scheduler we decided to use in our team to
orchestrate our workflows. Why we chose that, and not Highway or Mesos or something else?

Let’s take brief tour of HTCondor, before we continue on to Cuneiform.

1. It’s functional!

1. I don’t think I have to do much work to convince this audience about “Why Functional Programming Matters”. I think someone in this conference already took care of
this part ;)

2. Erlang. So, it can be trusted not to be the one thin abstraction layer on top of everything else that makes things much easier to develop and maintain, but then
causes trouble in production — thank you very much! We have plenty of other reasons to fail, like hardware issues and such, we don’t want the DSL to be the cause of
problems. Even it might have bugs initially, I know they can be fixed and the implementation can quickly become bulletproof, and even if support of it is poor — I can fix it
myself! But, support isn’t poor, Joergen and his cuneiform colleagues are working really hard on this thing. Just like Phoenix and Elixir, Cuneiform has awesome
support, at least in my experience. Though Erlang implementation is not production-ready at the moment, but it’s very quickly getting there. It was originally written in
Java, and because Java, IMHO, isn’t the most suitable language for implementing a DSL, nor it is the best choice for supervising backend progress, the code base is a
huge mess — at least comparing to Erlang. Once rewritten in Eralng it resulted in 80% less code.

3. And what really did it for me — one of the backends it supports is HTCondor! What is HTCondor. That’s the the job scheduler we decided to use in our team to
orchestrate our workflows. Why we chose that, and not Highway or Mesos or something else?

Let’s take brief tour of HTCondor, before we continue on to Cuneiform.

1. It’s functional!
2. It’s implemented in Erlang.

It can be trusted!

1. I don’t think I have to do much work to convince this audience about “Why Functional Programming Matters”. I think someone in this conference already took care of
this part ;)

2. Erlang. So, it can be trusted not to be the one thin abstraction layer on top of everything else that makes things much easier to develop and maintain, but then
causes trouble in production — thank you very much! We have plenty of other reasons to fail, like hardware issues and such, we don’t want the DSL to be the cause of
problems. Even it might have bugs initially, I know they can be fixed and the implementation can quickly become bulletproof, and even if support of it is poor — I can fix it
myself! But, support isn’t poor, Joergen and his cuneiform colleagues are working really hard on this thing. Just like Phoenix and Elixir, Cuneiform has awesome
support, at least in my experience. Though Erlang implementation is not production-ready at the moment, but it’s very quickly getting there. It was originally written in
Java, and because Java, IMHO, isn’t the most suitable language for implementing a DSL, nor it is the best choice for supervising backend progress, the code base is a
huge mess — at least comparing to Erlang. Once rewritten in Eralng it resulted in 80% less code.

3. And what really did it for me — one of the backends it supports is HTCondor! What is HTCondor. That’s the the job scheduler we decided to use in our team to
orchestrate our workflows. Why we chose that, and not Highway or Mesos or something else?

Let’s take brief tour of HTCondor, before we continue on to Cuneiform.

1. It’s functional!
2. It’s implemented in Erlang.

It can be trusted!

3. It supports HTCondor backend!HTCondor

1. I don’t think I have to do much work to convince this audience about “Why Functional Programming Matters”. I think someone in this conference already took care of
this part ;)

2. Erlang. So, it can be trusted not to be the one thin abstraction layer on top of everything else that makes things much easier to develop and maintain, but then
causes trouble in production — thank you very much! We have plenty of other reasons to fail, like hardware issues and such, we don’t want the DSL to be the cause of
problems. Even it might have bugs initially, I know they can be fixed and the implementation can quickly become bulletproof, and even if support of it is poor — I can fix it
myself! But, support isn’t poor, Joergen and his cuneiform colleagues are working really hard on this thing. Just like Phoenix and Elixir, Cuneiform has awesome
support, at least in my experience. Though Erlang implementation is not production-ready at the moment, but it’s very quickly getting there. It was originally written in
Java, and because Java, IMHO, isn’t the most suitable language for implementing a DSL, nor it is the best choice for supervising backend progress, the code base is a
huge mess — at least comparing to Erlang. Once rewritten in Eralng it resulted in 80% less code.

3. And what really did it for me — one of the backends it supports is HTCondor! What is HTCondor. That’s the the job scheduler we decided to use in our team to
orchestrate our workflows. Why we chose that, and not Highway or Mesos or something else?

Let’s take brief tour of HTCondor, before we continue on to Cuneiform.

HTCondor

1. HTCondor is a specialized workload management system for compute-intensive jobs. Like other full-featured batch systems, HTCondor provides a job queueing
mechanism, scheduling policy, priority scheme, resource monitoring, and resource management. Users submit their serial or parallel jobs to HTCondor, HTCondor
places them into a queue, chooses when and where to run the jobs based upon a policy, carefully monitors their progress, and ultimately informs the user upon
completion.

2. To put in simpler terms: you’re a scientist in need of running high-intensity workflows it can scavenge an entire university system for you to get the CPU cycles and
memory you need to get job done. Thanks to its amazing match-making mechanism called Class Ads. A worker can be anything that chooses to advertise itself as a
worker “Use me all you want as long as nobody is at the keyboard!” As for the job “Class Add”, “Hey I need 8 cpus and 256M of memory, you got that for me?” And
there is a negotiator to negotiate between the jobs and the machines, and there is a scheduler to schedule jobs when upstreams are complete and a suitable machine
becomes available. And the master to keep the logs. Quite a theater! And in my experience with condor so far, the actors rehearsed their roles really well, the
system is so darn reliable. So, here is a fun fact — no wonder LIGO lab used HTCondor

HTCondor
•a specialized workload management system for
compute-intensive jobs

1. HTCondor is a specialized workload management system for compute-intensive jobs. Like other full-featured batch systems, HTCondor provides a job queueing
mechanism, scheduling policy, priority scheme, resource monitoring, and resource management. Users submit their serial or parallel jobs to HTCondor, HTCondor
places them into a queue, chooses when and where to run the jobs based upon a policy, carefully monitors their progress, and ultimately informs the user upon
completion.

2. To put in simpler terms: you’re a scientist in need of running high-intensity workflows it can scavenge an entire university system for you to get the CPU cycles and
memory you need to get job done. Thanks to its amazing match-making mechanism called Class Ads. A worker can be anything that chooses to advertise itself as a
worker “Use me all you want as long as nobody is at the keyboard!” As for the job “Class Add”, “Hey I need 8 cpus and 256M of memory, you got that for me?” And
there is a negotiator to negotiate between the jobs and the machines, and there is a scheduler to schedule jobs when upstreams are complete and a suitable machine
becomes available. And the master to keep the logs. Quite a theater! And in my experience with condor so far, the actors rehearsed their roles really well, the
system is so darn reliable. So, here is a fun fact — no wonder LIGO lab used HTCondor

HTCondor
•a specialized workload management system for
compute-intensive jobs

Mesos and
Highway

1. HTCondor is a specialized workload management system for compute-intensive jobs. Like other full-featured batch systems, HTCondor provides a job queueing
mechanism, scheduling policy, priority scheme, resource monitoring, and resource management. Users submit their serial or parallel jobs to HTCondor, HTCondor
places them into a queue, chooses when and where to run the jobs based upon a policy, carefully monitors their progress, and ultimately informs the user upon
completion.

2. To put in simpler terms: you’re a scientist in need of running high-intensity workflows it can scavenge an entire university system for you to get the CPU cycles and
memory you need to get job done. Thanks to its amazing match-making mechanism called Class Ads. A worker can be anything that chooses to advertise itself as a
worker “Use me all you want as long as nobody is at the keyboard!” As for the job “Class Add”, “Hey I need 8 cpus and 256M of memory, you got that for me?” And
there is a negotiator to negotiate between the jobs and the machines, and there is a scheduler to schedule jobs when upstreams are complete and a suitable machine
becomes available. And the master to keep the logs. Quite a theater! And in my experience with condor so far, the actors rehearsed their roles really well, the
system is so darn reliable. So, here is a fun fact — no wonder LIGO lab used HTCondor

HTCondor
•a specialized workload management system for
compute-intensive jobs

Mesos and
Highway

1. HTCondor is a specialized workload management system for compute-intensive jobs. Like other full-featured batch systems, HTCondor provides a job queueing
mechanism, scheduling policy, priority scheme, resource monitoring, and resource management. Users submit their serial or parallel jobs to HTCondor, HTCondor
places them into a queue, chooses when and where to run the jobs based upon a policy, carefully monitors their progress, and ultimately informs the user upon
completion.

2. To put in simpler terms: you’re a scientist in need of running high-intensity workflows it can scavenge an entire university system for you to get the CPU cycles and
memory you need to get job done. Thanks to its amazing match-making mechanism called Class Ads. A worker can be anything that chooses to advertise itself as a
worker “Use me all you want as long as nobody is at the keyboard!” As for the job “Class Add”, “Hey I need 8 cpus and 256M of memory, you got that for me?” And
there is a negotiator to negotiate between the jobs and the machines, and there is a scheduler to schedule jobs when upstreams are complete and a suitable machine
becomes available. And the master to keep the logs. Quite a theater! And in my experience with condor so far, the actors rehearsed their roles really well, the
system is so darn reliable. So, here is a fun fact — no wonder LIGO lab used HTCondor

HTCondor
•a specialized workload management system for
compute-intensive jobs

Mesos and
Highway

1. HTCondor is a specialized workload management system for compute-intensive jobs. Like other full-featured batch systems, HTCondor provides a job queueing
mechanism, scheduling policy, priority scheme, resource monitoring, and resource management. Users submit their serial or parallel jobs to HTCondor, HTCondor
places them into a queue, chooses when and where to run the jobs based upon a policy, carefully monitors their progress, and ultimately informs the user upon
completion.

2. To put in simpler terms: you’re a scientist in need of running high-intensity workflows it can scavenge an entire university system for you to get the CPU cycles and
memory you need to get job done. Thanks to its amazing match-making mechanism called Class Ads. A worker can be anything that chooses to advertise itself as a
worker “Use me all you want as long as nobody is at the keyboard!” As for the job “Class Add”, “Hey I need 8 cpus and 256M of memory, you got that for me?” And
there is a negotiator to negotiate between the jobs and the machines, and there is a scheduler to schedule jobs when upstreams are complete and a suitable machine
becomes available. And the master to keep the logs. Quite a theater! And in my experience with condor so far, the actors rehearsed their roles really well, the
system is so darn reliable. So, here is a fun fact — no wonder LIGO lab used HTCondor

HTCondor
•a specialized workload management system for
compute-intensive jobs

Mesos and
Highway

1. HTCondor is a specialized workload management system for compute-intensive jobs. Like other full-featured batch systems, HTCondor provides a job queueing
mechanism, scheduling policy, priority scheme, resource monitoring, and resource management. Users submit their serial or parallel jobs to HTCondor, HTCondor
places them into a queue, chooses when and where to run the jobs based upon a policy, carefully monitors their progress, and ultimately informs the user upon
completion.

2. To put in simpler terms: you’re a scientist in need of running high-intensity workflows it can scavenge an entire university system for you to get the CPU cycles and
memory you need to get job done. Thanks to its amazing match-making mechanism called Class Ads. A worker can be anything that chooses to advertise itself as a
worker “Use me all you want as long as nobody is at the keyboard!” As for the job “Class Add”, “Hey I need 8 cpus and 256M of memory, you got that for me?” And
there is a negotiator to negotiate between the jobs and the machines, and there is a scheduler to schedule jobs when upstreams are complete and a suitable machine
becomes available. And the master to keep the logs. Quite a theater! And in my experience with condor so far, the actors rehearsed their roles really well, the
system is so darn reliable. So, here is a fun fact — no wonder LIGO lab used HTCondor

HTCondor
•a specialized workload management system for
compute-intensive jobs

Mesos and
Highway

1. HTCondor is a specialized workload management system for compute-intensive jobs. Like other full-featured batch systems, HTCondor provides a job queueing
mechanism, scheduling policy, priority scheme, resource monitoring, and resource management. Users submit their serial or parallel jobs to HTCondor, HTCondor
places them into a queue, chooses when and where to run the jobs based upon a policy, carefully monitors their progress, and ultimately informs the user upon
completion.

2. To put in simpler terms: you’re a scientist in need of running high-intensity workflows it can scavenge an entire university system for you to get the CPU cycles and
memory you need to get job done. Thanks to its amazing match-making mechanism called Class Ads. A worker can be anything that chooses to advertise itself as a
worker “Use me all you want as long as nobody is at the keyboard!” As for the job “Class Add”, “Hey I need 8 cpus and 256M of memory, you got that for me?” And
there is a negotiator to negotiate between the jobs and the machines, and there is a scheduler to schedule jobs when upstreams are complete and a suitable machine
becomes available. And the master to keep the logs. Quite a theater! And in my experience with condor so far, the actors rehearsed their roles really well, the
system is so darn reliable. So, here is a fun fact — no wonder LIGO lab used HTCondor

HTCondor
•a specialized workload management system for
compute-intensive jobs

Mesos and
Highway

1. HTCondor is a specialized workload management system for compute-intensive jobs. Like other full-featured batch systems, HTCondor provides a job queueing
mechanism, scheduling policy, priority scheme, resource monitoring, and resource management. Users submit their serial or parallel jobs to HTCondor, HTCondor
places them into a queue, chooses when and where to run the jobs based upon a policy, carefully monitors their progress, and ultimately informs the user upon
completion.

2. To put in simpler terms: you’re a scientist in need of running high-intensity workflows it can scavenge an entire university system for you to get the CPU cycles and
memory you need to get job done. Thanks to its amazing match-making mechanism called Class Ads. A worker can be anything that chooses to advertise itself as a
worker “Use me all you want as long as nobody is at the keyboard!” As for the job “Class Add”, “Hey I need 8 cpus and 256M of memory, you got that for me?” And
there is a negotiator to negotiate between the jobs and the machines, and there is a scheduler to schedule jobs when upstreams are complete and a suitable machine
becomes available. And the master to keep the logs. Quite a theater! And in my experience with condor so far, the actors rehearsed their roles really well, the
system is so darn reliable. So, here is a fun fact — no wonder LIGO lab used HTCondor

HTCondor
•a specialized workload management system for
compute-intensive jobs

1. HTCondor is a specialized workload management system for compute-intensive jobs. Like other full-featured batch systems, HTCondor provides a job queueing
mechanism, scheduling policy, priority scheme, resource monitoring, and resource management. Users submit their serial or parallel jobs to HTCondor, HTCondor
places them into a queue, chooses when and where to run the jobs based upon a policy, carefully monitors their progress, and ultimately informs the user upon
completion.

2. To put in simpler terms: you’re a scientist in need of running high-intensity workflows it can scavenge an entire university system for you to get the CPU cycles and
memory you need to get job done. Thanks to its amazing match-making mechanism called Class Ads. A worker can be anything that chooses to advertise itself as a
worker “Use me all you want as long as nobody is at the keyboard!” As for the job “Class Add”, “Hey I need 8 cpus and 256M of memory, you got that for me?” And
there is a negotiator to negotiate between the jobs and the machines, and there is a scheduler to schedule jobs when upstreams are complete and a suitable machine
becomes available. And the master to keep the logs. Quite a theater! And in my experience with condor so far, the actors rehearsed their roles really well, the
system is so darn reliable. So, here is a fun fact — no wonder LIGO lab used HTCondor

http://www.opensciencegrid.org/osg-helps-ligo-
scientists-confirm-einsteins-last-unproven-theory/

1. Laser Interferometer Gravitational-Wave Observatory (LIGO) Scientific Collaboration (LSC) have observed ripples in the fabric of spacetime called gravitational
waves.

To enable checkpointing, the user must link the program with the Condor system call library
(libcondorsyscall.a), using the condor_compile command

2. HTCondor is a 15-year-old system, the product of years of research by the Center for High Throughput Computing in the Department of Computer Sciences at the
University of Wisconsin-Madison (UW-Madison)

1. Condor doesn't optimize for fast job startup, but for high throughput. That’s important to remember when you consider it for your use case.

2. It’s old, but it’s very modern as it has great support. For instance, it has many different universes the job can run in, and one of the newest supported universes is

“Docker”. It’s new kid on the block and condor supports it.

3. One and only downside: there is lot to learn, somewhat unintuitive syntax and setup at first. A lot of people hate DAGMAN the workflow DSL condor provides.

Thousands of pages of tutorials (though that is justified — condor is a powerhouse of functionality, it’s got to be documented somewhere.

4. Super cool feature, Condor's Checkpoint Mechanism. Checkpointing is taking a snapshot of the current state of a program in such a way that the program can be

restarted from that state at a later time. Checkpointing gives the Condor scheduler the freedom to reconsider scheduling decisions through preemptive-resume
scheduling. Remember we mentioned job re-entrance essential if running on AWS Spot instances?

University of Wisconsin-Madison

To enable checkpointing, the user must link the program with the Condor system call library
(libcondorsyscall.a), using the condor_compile command

2. HTCondor is a 15-year-old system, the product of years of research by the Center for High Throughput Computing in the Department of Computer Sciences at the
University of Wisconsin-Madison (UW-Madison)

1. Condor doesn't optimize for fast job startup, but for high throughput. That’s important to remember when you consider it for your use case.

2. It’s old, but it’s very modern as it has great support. For instance, it has many different universes the job can run in, and one of the newest supported universes is

“Docker”. It’s new kid on the block and condor supports it.

3. One and only downside: there is lot to learn, somewhat unintuitive syntax and setup at first. A lot of people hate DAGMAN the workflow DSL condor provides.

Thousands of pages of tutorials (though that is justified — condor is a powerhouse of functionality, it’s got to be documented somewhere.

4. Super cool feature, Condor's Checkpoint Mechanism. Checkpointing is taking a snapshot of the current state of a program in such a way that the program can be

restarted from that state at a later time. Checkpointing gives the Condor scheduler the freedom to reconsider scheduling decisions through preemptive-resume
scheduling. Remember we mentioned job re-entrance essential if running on AWS Spot instances?

University of Wisconsin-Madison

Condor doesn't optimize for fast job startup,
but for high throughput

To enable checkpointing, the user must link the program with the Condor system call library
(libcondorsyscall.a), using the condor_compile command

2. HTCondor is a 15-year-old system, the product of years of research by the Center for High Throughput Computing in the Department of Computer Sciences at the
University of Wisconsin-Madison (UW-Madison)

1. Condor doesn't optimize for fast job startup, but for high throughput. That’s important to remember when you consider it for your use case.

2. It’s old, but it’s very modern as it has great support. For instance, it has many different universes the job can run in, and one of the newest supported universes is

“Docker”. It’s new kid on the block and condor supports it.

3. One and only downside: there is lot to learn, somewhat unintuitive syntax and setup at first. A lot of people hate DAGMAN the workflow DSL condor provides.

Thousands of pages of tutorials (though that is justified — condor is a powerhouse of functionality, it’s got to be documented somewhere.

4. Super cool feature, Condor's Checkpoint Mechanism. Checkpointing is taking a snapshot of the current state of a program in such a way that the program can be

restarted from that state at a later time. Checkpointing gives the Condor scheduler the freedom to reconsider scheduling decisions through preemptive-resume
scheduling. Remember we mentioned job re-entrance essential if running on AWS Spot instances?

University of Wisconsin-Madison

Condor doesn't optimize for fast job startup,
but for high throughput

It’s 15 years old, yet very modern

To enable checkpointing, the user must link the program with the Condor system call library
(libcondorsyscall.a), using the condor_compile command

2. HTCondor is a 15-year-old system, the product of years of research by the Center for High Throughput Computing in the Department of Computer Sciences at the
University of Wisconsin-Madison (UW-Madison)

1. Condor doesn't optimize for fast job startup, but for high throughput. That’s important to remember when you consider it for your use case.

2. It’s old, but it’s very modern as it has great support. For instance, it has many different universes the job can run in, and one of the newest supported universes is

“Docker”. It’s new kid on the block and condor supports it.

3. One and only downside: there is lot to learn, somewhat unintuitive syntax and setup at first. A lot of people hate DAGMAN the workflow DSL condor provides.

Thousands of pages of tutorials (though that is justified — condor is a powerhouse of functionality, it’s got to be documented somewhere.

4. Super cool feature, Condor's Checkpoint Mechanism. Checkpointing is taking a snapshot of the current state of a program in such a way that the program can be

restarted from that state at a later time. Checkpointing gives the Condor scheduler the freedom to reconsider scheduling decisions through preemptive-resume
scheduling. Remember we mentioned job re-entrance essential if running on AWS Spot instances?

University of Wisconsin-Madison

Condor doesn't optimize for fast job startup,
but for high throughput

It’s 15 years old, yet very modern
Condor's Checkpoint Mechanism

To enable checkpointing, the user must link the program with the Condor system call library
(libcondorsyscall.a), using the condor_compile command

2. HTCondor is a 15-year-old system, the product of years of research by the Center for High Throughput Computing in the Department of Computer Sciences at the
University of Wisconsin-Madison (UW-Madison)

1. Condor doesn't optimize for fast job startup, but for high throughput. That’s important to remember when you consider it for your use case.

2. It’s old, but it’s very modern as it has great support. For instance, it has many different universes the job can run in, and one of the newest supported universes is

“Docker”. It’s new kid on the block and condor supports it.

3. One and only downside: there is lot to learn, somewhat unintuitive syntax and setup at first. A lot of people hate DAGMAN the workflow DSL condor provides.

Thousands of pages of tutorials (though that is justified — condor is a powerhouse of functionality, it’s got to be documented somewhere.

4. Super cool feature, Condor's Checkpoint Mechanism. Checkpointing is taking a snapshot of the current state of a program in such a way that the program can be

restarted from that state at a later time. Checkpointing gives the Condor scheduler the freedom to reconsider scheduling decisions through preemptive-resume
scheduling. Remember we mentioned job re-entrance essential if running on AWS Spot instances?

1. It’s functional!

2. It’s implemented in Erlang.
It can be trusted!

3. It supports HTCondor backend!

So where were we? It supports HTCondor backend… but also Highway and a local backend, and possibly some cuneiform-native Erlang distributed backend, and
maybe Mesos in the future. Anything is possible with cuneiform modular and pluggable architecture.

Beautiful logical syntax — I know you can’t wait to see it, but no worries, we’ll be looking at that stuff for the rest of the presentation. And honestly, there isn’t much to it,
it’s dead simple. All of the heavy lifting is in:

5. Foreign language support… Bash, Python, R… what have you. Well, Bash, Python, R is what we have. So I don’t care much about others at this point, but there are
inquiries about adding Ruby, etc., I’m sure it would be easy as pie to add elixir and especially erlang support in the future. Cuneiform architecture is very modular and
pluggable, let’s take a look:

1. It’s functional!

2. It’s implemented in Erlang.
It can be trusted!

3. It supports HTCondor backend!

So where were we? It supports HTCondor backend… but also Highway and a local backend, and possibly some cuneiform-native Erlang distributed backend, and
maybe Mesos in the future. Anything is possible with cuneiform modular and pluggable architecture.

Beautiful logical syntax — I know you can’t wait to see it, but no worries, we’ll be looking at that stuff for the rest of the presentation. And honestly, there isn’t much to it,
it’s dead simple. All of the heavy lifting is in:

5. Foreign language support… Bash, Python, R… what have you. Well, Bash, Python, R is what we have. So I don’t care much about others at this point, but there are
inquiries about adding Ruby, etc., I’m sure it would be easy as pie to add elixir and especially erlang support in the future. Cuneiform architecture is very modular and
pluggable, let’s take a look:

1. It’s functional!

2. It’s implemented in Erlang.
It can be trusted!

3. It supports HTCondor backend!

4. Beautiful simple logical syntax.

So where were we? It supports HTCondor backend… but also Highway and a local backend, and possibly some cuneiform-native Erlang distributed backend, and
maybe Mesos in the future. Anything is possible with cuneiform modular and pluggable architecture.

Beautiful logical syntax — I know you can’t wait to see it, but no worries, we’ll be looking at that stuff for the rest of the presentation. And honestly, there isn’t much to it,
it’s dead simple. All of the heavy lifting is in:

5. Foreign language support… Bash, Python, R… what have you. Well, Bash, Python, R is what we have. So I don’t care much about others at this point, but there are
inquiries about adding Ruby, etc., I’m sure it would be easy as pie to add elixir and especially erlang support in the future. Cuneiform architecture is very modular and
pluggable, let’s take a look:

1. It’s functional!

2. It’s implemented in Erlang.
It can be trusted!

3. It supports HTCondor backend!

4. Beautiful simple logical syntax.

5. Foreign language support: Bash,
Python, R…

So where were we? It supports HTCondor backend… but also Highway and a local backend, and possibly some cuneiform-native Erlang distributed backend, and
maybe Mesos in the future. Anything is possible with cuneiform modular and pluggable architecture.

Beautiful logical syntax — I know you can’t wait to see it, but no worries, we’ll be looking at that stuff for the rest of the presentation. And honestly, there isn’t much to it,
it’s dead simple. All of the heavy lifting is in:

5. Foreign language support… Bash, Python, R… what have you. Well, Bash, Python, R is what we have. So I don’t care much about others at this point, but there are
inquiries about adding Ruby, etc., I’m sure it would be easy as pie to add elixir and especially erlang support in the future. Cuneiform architecture is very modular and
pluggable, let’s take a look:

Cuneiform Architecture

Cu
ne

ifo
rm

 D
SL

HTcondor

Highway

Python

Bash

R

EFFI CUNEIFORM CRE

Three repos in GitHub

1. Cuneiform itself, that has the actual DSL semantics and parsing.

2. EFFI: Foreign Function Interface. For foreign language support.

3. CRE: Distrubuted backends. Local, Highway, HTCondor, maybe Mesos and native Erlang backend in the future?

So, whew, I am done prepping you for the actual thing. Hope you’re very excited, because I’m about to show you the super-awesome Cuneiform stuff. Let’s open the
curtains!

Cuneiform Architecture

Cu
ne

ifo
rm

 D
SL

HTcondor

Highway

Python

Bash

R

EFFI CUNEIFORM CRE

Three repos in GitHub

1. Cuneiform itself, that has the actual DSL semantics and parsing.

2. EFFI: Foreign Function Interface. For foreign language support.

3. CRE: Distrubuted backends. Local, Highway, HTCondor, maybe Mesos and native Erlang backend in the future?

So, whew, I am done prepping you for the actual thing. Hope you’re very excited, because I’m about to show you the super-awesome Cuneiform stuff. Let’s open the
curtains!

http://ceur-ws.org/Vol-1330/paper-03.pdf

Contributors
Main contributors of Cuneiform are:
 • Jörgen Brandt
 • Marc Bux
 • Ulf Leser

Cuneiform has been conceived in the course of the EU
research project BiobankCloud.

Switch to cuneiform editor for syntax demo…

http://ceur-ws.org/Vol-1330/paper-03.pdf
mailto:brandjoe@hu-berlin.de
mailto:buxmarcn@informatik.hu-berlin.de
mailto:leser@informatik.hu-berlin.de
http://www.biobankcloud.com/

Condor submit file example
 executable = cf-generated-submit-script
 universe = vanilla
 input = test.data
 output = script.stdout
 error = script.stderr
 log = condor.log

 initialdir = run_0
 queue

> condor_submit submitfile

Cuneiform will capture any custom parameters from the CF file and generate the cubmit file.

If no parameters present it’ll just go with the defaults, i.e. universe=vanilla. As for executable that gets wrapped by Cuneiform depending on what language it is in and
will be named automatically (i.e. cfsubmitfile) and added to this generated file.

Thank you!

Josh Flachsbart and the A&I team.

Jörgen Brandt

Twitter: @irina_guberman

