
v
MIGRATING AN

INVOICING SYSTEM
TO ELIXIR/ERLANG

@HiphooxNorberto Ortigoza

HOW TO SURVIVE
A REWRITE

WHERE? CONTEXT WHAT WE DID THE FINISH

WHERE?
01

MAPA DE MÉXICO
This is where

I’m from

MAPA DE MÉXICO

MAPA DE MÉXICO

MAPA DE MÉXICO

MAPA DE MÉXICO

MAPA DE MÉXICO

MAPA DE MÉXICO

MAPA DE MÉXICO

Largest Elixir Meetups

Last time we sold out in 3 weeks!

MAPA DE MÉXICO

Everyone is invited!

CONTEXT
02

• First electronic invoices in 2005.

• Electronic invoices have been mandatory
since 2014.

Background

• 50 million total tax payers in Mexico.

• More electronic documents in the next years:
payroll documents, birth certificates, etc.

Statistics
Transactions in 2015

450,000,000

900,000,000

1,350,000,000

1,800,000,000

In
te

rfa
ct

ur
a

Ed
ic

om

D
iv

er
za

Pe
ga

so
 D

ig
ita

l

Tr
al

ix

Co
m

er
ci

o
D

ig
ita

l

So
lu

ci
on

 F
ac

tib
le

Ko
ne

sh
/A

sp
el

Re
ac

hc
or

e

So
lu

pa
c0

We were here

TOP 10 COMPANIES

Statistics
Transactions in 2016

450,000,000

900,000,000

1,350,000,000

1,800,000,000

In
te

rfa
ct

ur
a

Ed
ic

om

D
iv

er
za

Pe
ga

so
 D

ig
ita

l

Tr
al

ix

Co
m

er
ci

o
D

ig
ita

l

So
lu

ci
on

 F
ac

tib
le

Ko
ne

sh
/A

sp
el

Re
ac

hc
or

e

So
lu

pa
c0

We’ll be here!

TOP 10 COMPANIES

• 700 millions transactions by the end of 2016.

Statistics

• 44 transactions per second.

• Company has 341,000 users.

SO…

That’s it!?
Really!?

IT WAS NOT
ABOUT
PERFORMANCE
OR
THROUGHPUT

IT WAS ABOUT
AVAILABILITY
AND COST
REDUCTION

• Clients have critical business processes that
depend on getting the invoices online.

Requirements

• Tax authority (SAT) has heavy fines if our
clients or Diverza don’t deliver invoices on
time.

• If not, they can lose money, clients or
merchandise.

• System needs to be available all the time.

• We were paying a lot of money for
infrastructure.

End of last year

We started working here

Growth in the last years

Document Validation
Structure &
data

Invoicing process
Client Validation
Credentials &
payment status

Invoice Creation
Structure

Invoice Certification
Digital signatures

Invoice Delivery
Tax authority (SAT) &
Email to client

Invoice Response
To client

Asynchronously

ONCE UPON A TIME
THERE WAS A SYSTEM…

Our servers
15 in totalOur clients

Hundreds of them

Java Servers
Web Services

SQL Server
Invoice DB

Java client
Batch processing

Legacy System

Our clients
Thousands of them

Any technology
Online processing

Hardware Security Module
(HSM)
Digital signature

SOAP

SOAP

Wow!

Physical Servers

• Operating System: ESX

• Processor:Dual Processor, Octo Core Intel
2.70GHz.

• Memory:128 GB (Std.)

• 2 Type-1 Hypervisors

Java Servers
• vCPUs: 4

• Memory: 18 - 24 GB

• Hard Drive: 50 GB

• OS: Windows Server 2008

• Web Server: Apache

What!?

Resultado de Pruebas a Timbre Fiscal
Tr

an
sa

ct
io

ns
 p

er
 s

ec
on

d

10

20

30

40

Concurrent users

90 150 180 190 210

Legacy System

Concurrent Users

It crashed! 😱

• Downtimes because of memory leaks and manual
deployments.

• Multiples copies of the system in order to manage
crashes and isolation.

• These copies weren’t synchronized. Some were
months apart.

Status

• It consumes a lot of resources: servers, RAM, etc.

Status
• Fixing simple bugs takes too long because of the

dependencies in existing code.

• Adding new features takes too long, and costs
too much (hard to avoid side effects and therefore
we affected existing features).

• Testing takes too long (Manual).

• General and client specific rules mixed together.

• Around 5,000 fop templates, some of them very
complex.

Status

• We used a very old java library for PDF generation
(FOP).

• Outdated libraries, couldn’t replace them
because of compatibility problems.

WHAT WE WERE
THINKING AT THAT
MOMENT?

WHAT WE DID?
03

WAIT!

– Joel on software

They did … the single worst strategic mistake
that any software company can make:

They decided to rewrite the code
from scratch.

“

”

DO WE REALLY
NEED TO
REWRITE
EVERYTHING?

Strategy

Start the big rewrite if still needed

Replace the java
client with a Go

program

Start small projects in
Erlang/Elixir

Fix as much as
possible the old

system

Train the team in
Erlang & Elixir

Get fired for incompetence

SOUNDS LIKE
A GOOD PLAN!

LETS TRY IT!

HOW LONG
CAN IT TAKE?

WHAT CAN GO
WRONG?

Fixing the Old System
• We made changes to the Java System in order

to support the new load.

• We updated most of the libraries, operating
systems and applications servers.

• We rewrote small parts and replaced some
modules.

Fixing Old System

• Improved deployment system.

• Changed Data Center (Nightmare, please
don't do this).

• Removed some copies of the system.

• Managed to support increased load from 2013
to 2015.

Replacing the Client with Go

• It eliminates dependencies. Doesn't
need a runtime preinstalled.

• It supports multiple platforms.

• It has good support for concurrency.

This one doesn't need high availability
It’s ok for Go 😉

• It is very fast!

Training the Team
• We created a 2 days Elixir/Erlang/Phoenix

course.

• We gave the course for free for 1 and a half
years and received feedback.

• Now we have a 7 days course! 😀

• We created the Mexico City Elixir group.

• More than 100 people trained in total.

Small Projects in Elixir

• We created a proxy using Dynamo just before
Valim announced that it was deprecated 😧

• Some time later we replaced that proxy with
Phoenix. 😉

• Hardware Secure Module (HSM) emulator.

• A lot of Proofs of Concept (POCs).

The Big Rewrite
• We had luck! New version of the Invoice

standard came out.

• A team of 5 people was created.
• 2 people doing elixir development.
• 1 person doing deployment.
• 2 people doing test design and test

automation.

• We still had problems with costs and slow
development cycle.

The Big Rewrite

• We rewrote the system one time (to use OTP
Applications) in 3 months.

• We restructured it one time (to use Umbrella
projects and isolate Phoenix). 1 week.

• We wrote a first version in 6 months (part-
time). Just one Phoenix App.

Happy for Chris’ keynote!

Our servers
15 in totalOur clients

Hundreds of them

Java Servers
Web Services

SQL Server
Invoice DB

Java client
Batch processing

Previous System

Our clients
Thousands of them

Any technology
Online processing

Hardware Security Module
(HSM)
Digital signature

SOAP

SOAP

Our servers (4 in total)
Our clients

Hundreds of them

Elixir Server
Web Services

SQL Server
Repo

Go client
Batch processing

The Big Rewrite

Our clients
Thousands of them

Any technology
Online processing HSM Hardware

Digital signature

Java Service
PDF

HSM Software
Digital signature

Python/C

XML Schema
Validation

REST

REST

Validations
Cerberus

PDF
Java

HSM-SW
Hsm-Server

Web Services
Cetus

Invoice
Kirke

Doc Router
Hades

Signature
Thanatos

Client Delivery
Hermes

Elixir System

SAT Sender
Rheia-Client

|>

|>

|>

|>

|>

|>

|>

HSM-HW
Hsm-Server

Request

Python/C
Ports

SAT Delivery
Rheia-Server

Java/Python
OTP Application

Phoenix App
Elixir Module

Hardware

Elixir Servers
• vCPUs: 2

• Memory: 8 GB

• Hard Drive: 50 GB

• OS: Red Hat Enterprise Linux 6 (64 bit)

JUNE

SEPTEMBER

DECEMBER

2013 2014 2015 2016

Start fixing the
old system

Start evaluation of Erlang
and do proofs of concept

Start rewrite of Java
client in Go

JULY

APRIL

AUGUST

FEBRUARY

AUGUST
Start two first projects in
Elixir (Proxy and HSM
emulator)

Start big rewrite

Two full-time people in
the rewrite

Start final tests

deployment
in production

Today

FINAL TIMELINE

It just took 3 years!

THE FINISH
04

• PDF Generation uses Java, but no longer uses
Application Servers.

• XML Schema validation uses a Python library and Erlang
Ports.

• Best performance and latency.

• PostgreSQL for development and SQLServer in
production.

New System

New System
• Deployment using Ansible and Erlang releases

(exrm).

• Test suit with 990 tests, takes 5 minutes to run.

• You can develop and test everything without any
external dependency.

• We also have a Single Sign-On service in Erlang.

New System

• Flexibility to add new requirements very
quickly.

• No memory leaks.

• Centralized error management.

• 35 KLOCs in Elixir vs 500 KLOCs in Java.

Resultado de Pruebas a Timbre Fiscal
Tr

an
sa

ct
io

ns
 P

er
 S

ec
on

d

45

90

135

180

00:01 00:03 00:05 00:07 00:09 00:11 00:13 00:15

116

152

180

168 172

141

130

145

129

177

150 147
139 142 138

12

34
41 38

31
39

20

48

27

15

44
37

25 29 25

Java Erlang/Elixir

Max transactions/sec

Resultado de Pruebas a Timbre Fiscal
Tr

an
sa

ct
io

ns
 p

er
 s

ec
on

d

40

80

120

160

Concurrent users

90 150 180 190 210

Java Erlang/Elixir

Concurrent users

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

CP
U
00

1	

CP
U
00

2	

CPU	by	Processor	dm-ca05		23/12/2015				(0	threads	not	shown)	
User%	 Sys%	 Wait%	

Performance - CPU

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

be
am

.s
m
p	

ev
en

ts
/0
	

ev
en

ts
/1
	

kb
lo
ck
d/
0	

kj
ou

rn
al
d	

no
va
-a
ge
nt
	

py
th
on

	

ra
ck
sp
ac
e-
m
on

it	

ru
n_

er
l	

w
at
ch
do

g/
0	

Memory	by	command	(MBytes)	dm-ca05		23/12/2015	
Min.	 Avg.	 Max.	

Performance - Memory
< 1 GB! 😱

Final Words

• You will need support from the CEO.

• If you don’t have time it will cost more
money.

• You need to have a training path for your
team.

• It can take a long time. Be prepared for
that.

Final Words

• Be patient, sometimes you need to wait
for the right time. Be ready for that
moment.

• You are going to support the old system
for a long period of time.

• Team really loves Erlang & Elixir. People
get motivated.

• Erlang is awesome for binary protocols.

Final Words

• Sometimes you can’t trash everything
from the old system. That’s fine.

• You don’t need to trash everything from
the old system. Be open to reuse legacy
code.

• Erlang is good to orchestrate other
systems.

Final Words

• Don't be afraid of changing direction and
make big changes.

• From one monolithic project to going crazy
with different repos to finally use umbrella
projects.

• 4 months to have someone to understand
and use OTP.

THANKS
AND…

SEE YOU IN MEXICO!

@Hiphoox
Norberto

