
Antidote!
A scalable and consistent transactional datastore!

Annette Bieniusa!
University of Kaiserslautern!

The vision!

Building scalable highly-
available correct systems!

Geo-scale!
edge/fog/cloud !

Application specification must
be implemented!

Partition-tolerant!
Fault-tolerant!

Resilient!

SyncFree Research agenda!
•  Use cases and specification!

•  Verification tools!

•  Programming languages, libraries, frameworks!

•  Deployment and maintenance of systems!

•  Security!

•  Protocols for information propagation!

•  Data representation!

The Role of the Datastore!

•  Datastore API and semantics are essential!

•  Provide guarantees on which app developers need
to rely!

•  Usability of app might even depend on it!

•  Consistency needs to be balanced with availability
and other requirements!

Antidote in a nutshell!
Cloud-scale research database!

•  Performance: sharded, parallel DC!
•  Widely geo-replicated: !

➡  Many DCs, large or small, core or edge!
•  Available: Reads and updates do not block*!

➡  Enables fast response !
•  Sweet spot: performance vs. usability!

Research platform!
•  Different protocols sharing same infrastructure!
•  Fair comparison!

Why Erlang?!
•  First choice for industry partners!

•  Initially issues in hiring people and / or getting them
up to speed with Erlang!

•  Started with 4 PhDs and 2 PostDocs who didn’t
know anything about Erlang!

•  Allows fast prototyping!

•  Code quality has improved a lot (dialyzer, tests)!

Enabling technologies!

1. CRDTs!
•  Industry-mature!
!

2. Highly available, causally-consistent
transactions!
•  Ready for transfer!

I. CRDTs!

Conflict-free replicated data
types!

Abstract data type!
•  Encapsulates state!
•  Well-defined interface!

Replicated!
•  At multiple nodes (even clients!)!

Conflict-free!
•  Update replica without coordination!
•  Convergence guaranteed by design !

(formal properties)!
•  Decentralized!
•  No lost updates!

CRDTs in Antidote!
Counter! {increment, integer()}	

{decrement, integer()}	

ORSet !
{add, term()}	
{remove, term()}	
{add_all, [term()]}	
{remove_all, [term()]}	

GSet* ! {add, {term(), actor()}}	
{add_all, {[term()], actor()}}	

LWW Register* ! {assign, {term(), non_neg_integer()}}	
{assign, term()}.	

MV Register! {assign, {term(), non_neg_integer()}}	
{assign, term()}	

Map*!

{update, {[map_field_update() | map_field_remove()],
actorordot()}}.	
	
-type actorordot() :: riak_dt:actor() | riak_dt:dot().	
-type map_field_remove() :: {remove, field()}.	
-type map_field_update() :: {update, field(), crdt_op()}.	
-type crdt_op() :: term(). %% Valid riak_dt updates	
-type field() :: term()	

RGA�
(replicated growable array)	

{addRight, {any(), non_neg_integer()}}	
{remove, non_neg_integer()}	

* wrappers for CRDTs in riak_dt !

Consistency at different
levels!

Single object!
•  Safe: updates, state satisfy specification,

internal invariants!
•  Replicas converge to same state!
!

Multiple objects!
•  Relations between objects!
•  Cross-object invariants!
•  Different invariants ⟹ different mechanisms!

II. Transactions!

Highly Available
Transactions (HATs)!

Transaction with weaker isolation properties [Bailis et al.
VLDB’14]!
•  Monotonic reads!
•  Monotonic writes!
•  Writes-follow-reads!
•  All-or-nothing writes!
!

!
!
!

AP!

CAP line!

CP!

geo-SI optional! HAT+CC default!

Guarantees!
•  Weak invariant preservation !

•  Example: Maintaining friend lists!
-  friendOf(x,y) � friendOf(y,x)!
-  Foreign key constraint!

•  Equality constraints!
!

•  Restrictions!!
➡  Write skew!
!
!
!

read(x,y)!

read(x,y)! write(x = 3)!

write(y = 2)!

x = 0!
y = 5!

x = 3!
y = 2!

Invariant:!
x < y!

Invariant:!
violated!

Interactive Transaction API!

type bound_object() = {key(), crdt_type(), bucket()}.	
type snapshot_time() = vectorclock() | ignore.	
	
start_transation(snapshot_time(), properties()) ->  
 {ok, txid()} | {error, term()}.	
	
update_objects([{bound_object(),operation(),op_param()}],txid()) ->  
 ok | {error, term()}.	
	
read_objects([bound_object()], txid()) -> {ok, [term()]}.	
	
commit_transaction(txid()) ->  
 {ok, vectorclock()} | {error, term()}.	

Static Transaction API!

type bound_object() = {key(), crdt_type(), bucket()}.	
type snapshot_time() = vectorclock() | ignore.	
	
update_objects(snapshot_time(), properties(),  
 [{bound_object(), operation(), op_param()}]) ->	
 {ok, vectorclock()} | {error, reason()}.	
	
read_objects(snapshot_time(), properties(),  
 [bound_object()]) ->  
 {ok, [term()], vectorclock()}.	

access (Bob, photo) ⟹ ACL (Bob, photo)!

Not causal!

u!

u! v!

v!

v! u!Bob!

Alice @home!

Alice @phone!

Don’t show
photos to Bob	 post photo	

Bob sees
photo	

Causal-order delivery!Causal consistency!
u!

u! v!

v!

v!u!Bob!

Alice @home!

Alice @phone!

v observed effects of u!
 " "⟹ v should be delivered after u!
!

•  Guarantees additionally read-your-own-writes!
•  Strongest partition tolerant and available consistency model!
•  Doesn’t slow down the sender!

 Clock-SI[Du et al., SRDS 2013]!
•  Loosely-synchronized physical clocks, per shard!
•  Data objects versioned by timestamp!
•  Transaction!
‣  Read timestamp: Coordinator's current clock !
⟹ snapshot includes all earlier txns!

‣  Commit timestamp: 2PC !
⟹ max(shards' clocks)!

‣  Snapshot: consistent!
‣  Writes: all-or-nothing, total order (per DC)!

•  Read-only txns, single-node txns: no coordination!

Clock-SI protocol!
D

C
1 ! x!

y!
x0 = 0!

y0 = 0!

T1! begin; x.add(1); y.add(2); commit!

add(2)!

 add(1)!

T1: Snapshot = 3!
cTS = 8!

cTS = 9!

T1: commit = 9 !

Local total order: useful, acceptable!
•  2PC disjoint-access parallelism!
•  Intra-DC communication is fast!
•  1 scalar value per DC!

(DC1,9):add(2)!

(DC1,9): add(1)!

Cure!

„Geo-replicated Clock-SI“: updates originating in a
DC are totally ordered, all-or-nothing!

Version vector!
•  1 entry / DC!
•  Private to partition!

Other DC’s updates visible once all partitions
sync’d!

Heartbeat msg guarantees progress!

Causal+ Consistency
Protocols!

Resolution!
Logic !

Transactions !

COPS [SOSP11]! LWW! static read-only!

Eiger [NSDI13]! LWW!
static read-only!
static write-only!

!

GentleRain [SoCC14]! LWW! static read-only!

Cure [ICDCS16]! CRDTs! read-write interactive!

Related Work: implementation!
Update visibility

protocol!
Update visibility

latency ! Metadata Size !

COPS !
[SOSP11]! check messages! small! O(objects) !

Eiger!
[NSDI13]! check messages!

small!
(1/2 RTT each

DC)!
O(objects) !

GentleRain !
[SoCC14]! stabilization!

high!
(1/2 RTT furthest

DC)!
O(1)!

Cure!
[ICDCS16]! stabilization! small! O(DCs)!

Outlook: Partial replication!

•  Only replicate items of interest!
•  Performance: assumes locality!
•  Genuine: only receive updates of interest!
•  Missing information complicates consistency!

Architecture!

Architecture!

(Physical) Nodes!

Vnode!

Vnode!

Vnode! Vnode!

Vnode!

Vnode!Meta-
data

handling!

Inter-DC
messaging!

Node! Node!

Meta-
data

handling!
Inter-DC

messaging!

Organized in a ring (riak_core)!
Partitioned by consistent hashing!

Tx coordinators!Tx coordinators!Tx coordinators!

Virtual Nodes (Several per
physical node)!

Read
process!

InterDC replication!
•  Propagates

updates!
•  Checks causal

dependencies!

Materialisation
and logging!

• In memory and
on disk!

Read
process!

Read
process!

Transaction handling!
•  Orders updates!
•  Assigns timestamps!
•  Runs ClockSI!

InterDC
messaging!

Special ops!
• BCounters!
• Commit

hooks!

Meta-data
handling!

•  Handles requests to a
partition of keys (consistent
hashing)!

•  Organized in a ring!

•  Can operate autonomously
(reads and updates are
non-blocking*)!

Tx coordinators!

Evaluation!

Preliminary benchmarks!

Single item read or read + update transactions!
LWW registers, 100 byte objects, 50 000 objects

per node!
Clients run on different machines, ≈1 client node /

4 Antidote nodes!
Grid’5000: 130 nodes!
Nodes: 2 CPUs Intel Xeon E5-2660, 8 cores/CPU,

64GB RAM, 1863GB HDD, 10Gbps ethernet!

Grenoble!

Lyon!

Antidote nodes!
Client nodes!
(80 threads each)!

Sophia!

Evaluation: Scalability!
99(1)" 90(10)" 75(25)" 50(50)"

read(update) ratio"

DCs x Servers"
LWW registers" 100k keys/partition"

power law distribution"

Scale to new hardware -
throughput!

Update latencies (ms)!

New hardware! Old hardware!

Read latencies (ms)!

New hardware! Old hardware!

20 Nodes/DC!

4 or 8 Nodes/DC!

More features!

Transaction protocols!
•  Cure protocol to define snapshots and causal

dependencies, geo-replicated version of ClockSI
protocol [Akkoorath et al., ICDCS’16]!

•  GentleRain uses global stable time mechanism [Du
et al., SoCC’14]!

•  Eiger protocol with explicit dependency checks,
write-only txns [Lloyd, NSID’13]!

•  Eventual consistency!

Protocol buffer interface!

•  Uses PB encoding for efficient message transfer!

•  Connection via protocol buffer socket instead of
RPC calls!

•  Supports working with local obj proxy at client side!

Commit hooks!
• Hooks are functions that are executed when updating an object!

fun (update_object()) -> {ok, update_object()} | {error, Reason}.  
type update_object() :: { {key(), bucket()}, crdt_type(), update_op() }  
type update_op() :: {atom(), term()}	

• Pre- / Post-commit hooks can be registered per bucket!

• Before an object in the bucket is updated, pre-hook might modify the update operation!

• Post-hook gets the (potentially modified) operation and executes before returning to client !

register_post_hook(bucket(), module_name(), function_name())  
 -> ok | {error, function_not_exported}.	

register_pre_hook(bucket(), module_name(), function_name())  
 -> ok | {error, function_not_exported}.	

unregister_hook(pre_commit | post_commit, bucket()) -> ok.	

Things on our agenda!
•  Upgrade to Erlang 19!

•  Flexible data storage backend!

•  Security: Access control!

•  Support for Just-Right consistency!

Feedback welcome!!

Sources!
• Code repository!

https://github.com/SyncFree/antidote !

• Documentation!

http://syncfree.github.io/antidote !

• EU-Project Syncfree!

https://syncfree.lip6.fr!

The Antidote Team!

Deepthi Devaki Akkoorath, Alejandro Tomsiç, Manuel Bravo, Zhongmiao Li, Tyler Crain, Annette
Bieniusa, Nuno Preguiça, Marc Shapiro, Christopher Meiklejohn, Michał Jabczynski, Santiago
Alvarez Colombo, Mathias Weber, Peter Zeller, Ruma Paul, …!

Interested in collaboration?!

•  Tired of fixing inconsistencies in your data?!

•  You want to adapt your system to use Highly
Available Transactions?!

•  Need cutting edge research on consistency,
availability, edge/fog storage,…?!

Contact us!!

Open positions!

Just-Right Consistency database of the future!
!

Software Engineer position!
Post-doc position!

and several PhD Positions !
!

https://team.inria.fr/regal/job-offers/!

Geo-replication!

Replication to the edge!

Antidote protocol and
platform!

•  Available - A transaction can execute as long a copy of the
objects accessed !

•  Low latency - Replication, transactions execute in local DC!

•  Scalability!

•  Distributed - Transactions only touch the servers that replicate
the objects they access locally!

•  Meta-data size of O(DCs) (ClockSI used to total order DC)!

•  Per DC background stabilisation mechanism (to ensure
causal dependencies) (inspiration from GentleRain)!

In-DC Total Order!
In Data Centre!

•  Internal parallelism: sharding,
disjoint transactions!

•  Abstract view: sequential!
•  Low cost, footprint!
•  Snapshot Isolation (SI)!
‣  All-or-Nothing Transactions!
‣  Writes are totally ordered!
‣  Reads are consistent,

decoupled from writes!
‣  Read-only transactions are free!

Clock-SI!
[Du, SRDS 2013]!

•  Loosely-synchronized clocks, 1 / shard!
•  Data items versioned by timestamp!
•  Transaction!
‣  Read timestamp: coordinator's current clock ⟹

snapshot includes all earlier txns!
‣  Commit timestamp: 2PC ⟹ max (shards' clocks)!
‣  Snapshot: consistent!
‣  Writes: all-or-nothing, total order (per DC)!

•  Disjoint-access parallel (GPR)!
•  Read-only txns, single-server txns: free!

Clock-SI protocol!
IE

 (E
U

)! x!
y!

x0 = 0!

y0 = 0!

T1! begin; x.add(1); y.add(2); commit!

add(2)!

 add(1)!

T1: Snapshot = 3!
cTS = 8!

cTS = 9!

T1: commit = 9 !

Local total order: useful, acceptable!
•  2PC disjoint-access parallelism!
•  in DC communication is fast!
•  1 scalar / DC!

(IE,9):add(2)!

(IE,9): add(1)!

Geo-replicated Clock-SI!

Clock-SI: updates originating in a DC
are totally ordered, all-or-nothing!

Version vector!
•  1 entry / DC!
•  Private to partition!

Other DC’s updates visible once all
partitions sync’d!

Heartbeat msg guarantees progress!

DC 1! DC 2!

update!

update!

heartbeat!

heartbeat!
heartbeat check!

heartbeat check!
1.  Send heartbeat from each server with its local clock!
2.  Calculate minimum!
•  All updates up to that value have been received from that DC!

2! 3! 7! 5! 3!
DC1! DC2! DC3! DC4! DC5!

Commit time: DC3= 8!

56		

