
www.erlang-solutions.com

LFE - a real lisp in the
Erlang ecosystem

Robert Virding

www.erlang-solutions.com

2

The LFE goal

A "proper" lisp

Efficient implementation on the BEAM

Seamless interaction with Erlang/OTP
and all libraries.

www.erlang-solutions.com

3

▸ Background
▸ Erlang Ecosystem
▸ LFE

Overview

www.erlang-solutions.com

4

‣Ericsson’s “best seller” AXE
telephone exchanges (switches)
required large effort to develop
and maintain software.

‣The problem to solve was how
to make programming these
types of applications easier, but
keeping the same
characteristics.

Background: the problem

www.erlang-solutions.com

5

Background: some reflections

WE WERE TRYING TO SOLVE THE
PROBLEM

We were not out to implement the actor model

We were not out to implement a functional language

www.erlang-solutions.com

6

‣Handle a very large numbers of concurrent activities.

‣Actions must be performed at a certain point in time or within a certain time.

‣System distributed over several computers.

‣Interaction with hardware.

‣Very large software systems.

‣Complex functionality such as feature interaction.

‣Continuous operation over many years.

‣Software maintenance (reconfiguration etc.) without stopping the system.

‣Stringent quality and reliability requirements.

‣Fault tolerance both to hardware failures and software errors.
Bjarne Däcker, November 2000 - Licentiate Thesis

Background: problem domain

‣Handle a very large numbers of concurrent activities.

‣Actions must be performed at a certain point in time or within a certain time.

‣System distributed over several computers.

‣Interaction with hardware.

‣Very large software systems.

‣Complex functionality such as feature interaction.

‣Continuous operation over many years.

‣Software maintenance (reconfiguration etc.) without stopping the system.

‣Stringent quality and reliability requirements.

‣Fault tolerance both to hardware failures and software errors.
Bjarne Däcker, November 2000 - Licentiate Thesis

Not just telecom

www.erlang-solutions.com

7

Erlang and the system around it was designed
to solve this type of problem

Erlang/OTP provides direct support for these
issues

Background

www.erlang-solutions.com

8

Languages built/running
on top of the BEAM, Erlang
and OTP.

Erlang Ecosystem

By following "the rules" the
languages openly interact
with each other

www.erlang-solutions.com

9

Erlang Ecosystem

The whole system can
interact with other

systems

www.erlang-solutions.com

10

What is the BEAM?

A virtual machine to run Erlang

www.erlang-solutions.com

11

▸ Lightweight, massive concurrency
▸Asynchronous communication
▸ Process isolation
▸ Error handling
▸Continuous evolution of the system
▸ Soft real-time
▸Transparent SMP/multi-core support

These we seldom have to worry about directly in a language,  
except for receiving messages

Properties of the BEAM

www.erlang-solutions.com

12

▸ Immutable data
▸ Predefined set of data types
▸ Pattern matching
▸ Functional language
▸Modules/code
▸No global data

These are what we mainly "see" directly in our languages

Properties of the BEAM

www.erlang-solutions.com

13

▸Do we really something so old?

Why Lisp?

www.erlang-solutions.com

14

(defun union
 ((() set) set)
 (((cons x xs) set)
 (if (lists:member x set) (union xs set)
 (cons x (union xs set)))))

(defun intersection
 ((() _) ())
 (((cons x xs) set)
 (if (lists:member x set) (cons x (intersection xs set))
 (intersection xs set))))

▸Do we really want something so old?
▸ Fortunately we don't have to

Why Lisp?

www.erlang-solutions.com

15

Why Lisp?

(a b c)

bert more-of do if size >

(1 2 3)

(a b (x 1 y) 3)
(> size 4)
(if (> size 4)
 (bump-it)
 (drop-it))

(defun test (size)
 (if (> size 4)
 (bump-it)
 (drop-it)))

1 56.0 9 ‣ Numbers

‣ Symbols

‣ Lists

‣ Lists, hmm ...
‣ Lists, but this looks like code

‣ But code is lists

www.erlang-solutions.com

16

▸A lot has changed since 1958 ... even for Lisp: it has now even
more to offer
▸ It's a programmable programming language
▸As such, it's an excellent language for exploratory programming
▸Many are drawn to the beauty of the near syntaxlessness of the

language
▸Due to its venerable age there is an enormous body of code to

draw from

Why Lisp?

www.erlang-solutions.com

17

▸ It isn't an implementation of Scheme
▸ It isn't an implementation of Common Lisp
▸ It isn't an implementation of Clojure

▸ Properties of the Erlang VM make these languages difficult to
implement efficiently

What LFE isn't

www.erlang-solutions.com

18

▸ LFE is a proper lisp based on the features and limitations of the
Erlang VM
▸Runs on the standard Erlang VM
▸ LFE coexists seamlessly with OTP and the other languages in the

Erlang ecosystem

What LFE is

www.erlang-solutions.com

19

▸Data types
▸Modules/functions
▸ Lisp-1 vs. Lisp-2
▸ Pattern matching
▸Macros

Features of LFE

www.erlang-solutions.com

20

▸ LFE has a fixed set of data types
▹ Numbers
▹ Atoms (lisp symbols)
▹ Lists
▹ Tuples (lisp vectors)
▹ Maps
▹ Binaries
▹ Opaque types (pids, refs)

Data types

www.erlang-solutions.com

21

▸Only has a name, no other properties
▸ONE name space

▸No CL packages or namespaces

▹ No name munging to fake it
▹ foo in package bar => bar:foo

▸ Booleans are atoms, true and false

Atoms/symbols

www.erlang-solutions.com

22

(binary 1 2 3)
(binary (t little-endian (size 16))
 (u (size 4))
 (v (size 4))
 (f float (size 32))
 (b bitstring))

▸ Byte/bit data with constructors
▸ Properties are type, size, endianess, sign

Binaries

www.erlang-solutions.com

23

(binary (ip-version (size 4)) (hdr-len (size 4))
 (srvc-type (size 8)) (tot-len (size 16))
 (id (size 16)) (flags (size 3))
 (frag-off (size 13)) (ttl (size 8))
 (proto (size 8)) (hdr-chksum (size 16))
 (src-ip (size 32)) (dst-ip (size 32))
 (rest bytes))

▸ IPv4 packet header

Binaries

www.erlang-solutions.com

24

▸Modules are very basic
▹ Only have name and exported functions
▹ Only contains functions
▹ Flat module space

▸Modules are the unit of code handling
▹ Compilation, loading, deleting

▸ Functions only exist in modules
▹ Except in the shell (REPL)

▸NO interdependencies between modules
▸ Support for multiple modules in one file

Modules and functions

www.erlang-solutions.com

25

(defmodule arith
 (export (add 2) (add 3) (sub 2)))

(defun add (a b) (+ a b))

(defun add (a b c) (+ a b c))

(defun sub (a b) (- a b))

▸ Function definition resembles CL
▸ Functions CANNOT have a variable number of arguments!
▸Can have functions with the same names and different number of

arguments (arity), they are different functions

Modules and functions

www.erlang-solutions.com

26

▸ LFE modules can consist of
▹ Attributes
▹ Metadata
▹ Function definitions
▹ Macro definitions
▹ Compile time function definitions

▸Macros can be defined anywhere, but must be defined before
being used

Modules and functions

www.erlang-solutions.com

27

▸How symbols are evaluated in the function position and argument
position
▸ In Lisp-1 symbols only have value cells

▸ In Lisp-2 symbols have value and function cells

Lisp-1 vs. Lisp-2

(foo 42 bar)

value

(foo 42 bar)

function value

www.erlang-solutions.com

28

(defun foo (x y) …)
(defun foo (x y z) …)

(defun bar (a b c)
 (let ((baz (lambda (m) …)))
 (baz c)
 (foo a b)
 (foo 42 a b)))

▸With Lisp-1 in LFE I can have multiple top-level functions with the
same name, foo/2 and foo/3
▸ But only one local function with a name, baz/1
THIS IS INCONSISTENT!

Lisp-1 vs. Lisp-2

www.erlang-solutions.com

29

(defun foo (x y) …)
(defun foo (x y z) …)

(defun bar (a b c)
 (flet ((baz (m) …)
 (baz (m n) …))
 (foo a b)
 (foo 42 a b)
 (baz c)
 (baz a c)))

▸With Lisp-2 in LFE I can have multiple top-level and local functions
with the same name, foo/2, foo/3 and baz/1, baz/2

THIS IS CONSISTENT!

Lisp-1 vs. Lisp-2

www.erlang-solutions.com

30

▸ Erlang/LFE functions have both name and arity
▸ Lisp-2 fits Erlang VM better
▸ LFE is Lisp-2, or rather Lisp-2+

Lisp-1 vs. Lisp-2

www.erlang-solutions.com

31

▸ Pattern matching is a BIG WIN™
▸The Erlang VM directly supports pattern matching

▸We use pattern matching everywhere
▹ Function clauses
▹ let, case and receive
▹ In macros cond, lc and bc

Pattern matching

www.erlang-solutions.com

32

(let ((<pattern> <expression>)
 (<pattern> <expression>)
 …)

(case <expression>
 (<pattern> <expression> …)
 (<pattern> <expression> …)
 …)

(receive
 (<pattern> <expression> …)
 (<pattern> <expression> …)
 …)

▸Variables are only bound through pattern matching

Pattern matching

www.erlang-solutions.com

33

(defun name
 ([<pat1> <pat2> …] <expression> …)
 ([<pat1> <pat2> …] <expression> …)
 …)

(cond (<test> …)
 ((?= <pattern> <expr>) …)
 …)

▸ Function clauses use pattern matching to select clause

Pattern matching

www.erlang-solutions.com

34

(defun ackermann
 ([0 n] (+ n 1))
 ([m 0] (ackermann (- m 1) 1))
 ([m n] (ackermann (- m 1) (ackermann m (- n 1)))))

(defun member (x es)
 (cond ((=:= es ()) ‘false)
 ((=:= x (car es)) ‘true)
 (else (member x (cdr es)))))

(defun member
 ([x (cons e es)] (when (=:= x e)) ‘true)
 ([x (cons e es)] (member x es))
 ([x ()] ‘false))

Pattern matching

www.erlang-solutions.com

35

▸Macros are UNHYGIENIC
▹ But not so bad as all variables are scoped and cannot be changed

▸No (gensym)
▹ Cannot create unique atoms
▹ Unsafe in long-lived systems

▸Only compile-time at the moment
▹ Except in the shell (REPL)

▸Core forms can never be shadowed

Macros

www.erlang-solutions.com

36

(defmacro add-them (a b) `(+ ,a ,b))

(defmacro avg args ;(&rest args) in CL
 `(/ (+ ,@args) ,(length args)))

(defmacro list*
 ((list e) e)
 ((cons e es) `(cons ,e (list* . ,es)))
 (() ()))

▸Macros can have any other number of arguments
▹ But only one macro definition per name

▸Macros can have multiple clauses like functions
▹ The argument is then the list of arguments to the macro

▸We have the backquote macro

Macros

www.erlang-solutions.com

37

Code example

(defun ringing-a-side (addr b-pid b-addr)
 (receive
 ('on-hook
 (! b-pid 'cleared)
 (tele-os:stop-tone addr)
 (idle addr))
 ('answered
 (tele-os:stop-tone addr)
 (tele-os:connect addr b-addr)
 (speech addr b-pid b-addr))
 (`#(seize ,pid)
 (! pid 'rejected)
 (ringing-a-side addr b-pid b-addr))
 (_
 (ringing-a-side addr b-pid b-addr))
))

(defun ringing-b-side (addr a-pid)
 (receive
 ('cleared
 (tele-os:stop-ring addr)
 (idle addr))
 ('off_hook
 (tele-os:stop-ring addr)
 (! a-pid 'answered)
 (speech addr a-pid 'not-used))
 (`#(seize ,pid)
 (! pid 'rejected)
 (ringing-b-side addr a-pid))
 (_
 (ringing-b-side addr b-pid))))

www.erlang-solutions.com

38

▸Call inter-module macros (mod:macro …)
▹ Compile-time so far, run-time sort of (but is it used?)

▸Adding type notations
▸ Lisp Machine Flavors
▹ Pre-cursor to CLOS
▹ A not too-bad mapping with many cool properties

▸Clojure interface
▸ Lisp Machine Structs
▹ More versatile formatting and access
▹ Subsumes records and Elixir structs

Ongoing work

www.erlang-solutions.com

39

WHY? WHY? WHY?

I like Lisp

I like Erlang

I like to implement languages

So implementing LFE seemed 
natural

Robert Virding
rvirding@gmail.com
robert.virding@erlang-solutions.com
@rvirding

LFE
http://lfe.io/
https://github.com/rvirding.lfe
https://groups.google.se/group/lisp-flavoured-erlang
Slack: https://lfe.slack.com/
IRC: #erlang-lisp
Twitter: @ErlangLisp

