kriesy
Visualizing OTP State Machines

Nicholas Gunder (1r)

TRADESHIFI

and Pawel Antemijczuk (&)

MOTOROLA

Why would anyone do
this?

Two Things

e Not everyone will become an Erlang coder
AND

e Good Design is difficult when you have no idea what you
should do

Quick overview and feedback

Common understanding

lterative design

Reduced effort in capturing requirements

No one wants to maintain them!

Structure is not enforced

People have different opinions on how it should be done
Code cannot be mapped easily

They become detached from the implementation

s n ll G n (introduced 1976)

SDL Diagrams

id |

State

Input /
Message from user

Output /
Message to

Primitive from call ‘-.
N
Plane C code

N -

Decision l-l

S
Lorem Ipsum dolor
— — — — sit amet, consectetur

adipiscing elit.
b st S R

Procedure call

Lorem ipsum

_ _ __ _| dolor sit amet,

N-type procedure Sotehchl
adipiscing elit.

Lorem ipsum dolor
¥-type procedure sit amet,
consectetur
adipiscing elit.

soe D
C ®
reate request

Alternative
Lorem Ipsum
e dolor sit amet,
consectetur
Infout connector adipiscing elit.

Return

Stop (X)

Condition

Start

Procedure start

N-type start

X-type start

Procedure

Comment

Text extension

Signal note

Macro inlet

Macro outlet

Macro call

Callout

=
=
-
-
- 9
-

State entry point State exit p

Raise

Exception handler

Handle

Task timer start

Task timer stop

Internal output

Priority input

Enabling condition

Transition option

Compasite state

Class

it

Constraint

Lorem ipsum dolor

Block

Process

Service

Service type

Document

Multi docurment

Disk storage

Divided process

Divided event

On-page reference

Off-page reference

Extended header

call initiated(=Msg,
#state{call_reference=CallReference,
call type=cc}=State) ->
isi_error:log(?MODULE, info,

"State call initiated
received:~n~p~n",[Msg]),
NewState = stop_timer(t303,State),
outgoing message(
#qsig release{call_reference=CallReference},
State),
NextState = start_timer(t308,NewState),
{next_state, release_request, NextState};

-~z Tom
Hanks;
Forrest
o (Jllmp

- =,
Ll

July 6

“ M l (introduced 1994)

Beadcrd Stae
Simple Tahe

HrlestEe

(DiTpCHtE sEE

-0 ompoAEts ioon

Froiood date

Frotiond stae

Trareticn

soe |—oeoxe |

2
4

O)

Tritial peaudostate

Teminge psadstae
Eniry paink: peeudstate
B prirt psadostate

hoice peaudostabe

Fork.) Joi +
xatc',lld n pesudostate
Fork. | Join pesudostate -
h:riag'tdn

Jdrction peaudostate
Shlows hishory

Deep hishry

v

pz__wait_for_report__call_progressing

&

receive CZ_P2P_TARG_RING_RQST;

imer

receive CZ_P2P_RSRC_AVAIL_QUERY (if call from Phone); del
QUERY timer; send PZ_P2P_RSRC_AVAIL_RESP; run

RING_RQST timer (5 sec)

/ ’ﬂo—<$ create AC context

send PZ_P2P_CANCEL_RQST; run
COMPLETE_UPDT timer (5 sec)

pz__wait_for_report__call_progressing(

#tinfo_container{dev_info =
} = IzMsg,

#tstate{} = State
) >
S1 = del temp_timer(State),

case ac_proxy:create_context(#context{rtp =
#trtp{}, duplex_flag = Duplex}) of

receive CZ_P2P_NEW_CALL_UPDT(BUSY or ABORT) | 10K, AcContextId, AcRtpIp, AcPort} ->

call frorm Phone); del RING_RQST timer; run QUERY

timer (5 sec)

yes

send ISI_SETUP + AUDIO

INFO; send Start of Call to ATR;

run IP2E1_RTP_ADDR timar (2 sac)

pz__terminating]

IsiMsg = construct_isi_setup(S1),

S3 = run_temp_timer(?IP2E1_RTP_ADDR_TMO,
ip2el_rtp_addr_tmo, S2),

{next_state, pz__call_progressing,
S3#state{ac_context_id = AcContextId}}

end;
Error ->

?PERR(Cti, "~p: ac_proxy:create_context() error:
~p", [StateName, Error]),

S2 = cancel _call(cancel by isi gw,
?R_C_RSN_TETRA_CAUSE_NOT_DEF, S1, StateName),

{next_state, pz__terminating, S2}

X [)
receive AUDIO_INFO from IP2E1; del IP2E1_RTP_ADDR timei

madify AC context;; r:ln IEI_.»"&LEI RTING timer (5 sec)

v

pz__call_progressing

EriESY - demo

e Auto-generates gen_fsm to .dot and .json
e Requires include files for code parser
® Supports
o Simple state transitions
o Transitions within conditionals
o Guards
o All State events (simplified and expanded)
e https://github.com/haljin/erlesy

https://github.com/haljin/erlesy
https://github.com/haljin/erlesy
https://github.com/haljin/erlesy
https://github.com/haljin/erlesy

JOB OPENING — Motorola

Solutions

Software Developers
Motorola Solutions is a leading supplier of smart

work group communication solutions for
enterprises and governments around the world.
We focus exclusively on professional markets such
as public safety, utilities, energy, transportation,
manufacturing, and other commercial and
industrial customers.

The Job

You will join a team of highly skilled software
engineers that drive the core functionality
development and make the network infrastructure
of Motorola Solutions’ mission critical
communication systems. Based in the
Copenhagen office, you will open mindedly share
ideas and proactively collaborate with customers
and colleagues locally as well as across the globe
to create strong technical and customer-oriented
solutions.

The Person

You have a strong desire to develop market leading products
to the most demanding users in the world as well as the
potential and ambition to be one of the best software
engineers. It will take energy and drive to be successful and
we are looking for someone who is ready to challenge our
existing ways of working.

In addition, these are the characteristics we are looking for:

Recently
experience, possibly from a
startup company.

Expertise in real time Linux server solutions.
Good knowledge of C/C++ and/or functional

programming (Erlang similar).

Strong ability and enthusiasm to learn new

tAarhnrnAalAacdine 1Iin A cbhAart fimmoa

graduated or with a few years of
software based

