Sagas: distributed
transactions without locks

in Erlang

MARK ALLEN - ALERTLOGIC
MARK.ALLEN@ALERTLOGIC.COM
@BYTEMEORG

Sagas

mark mcbride 9+ Follow v
mccv

them: is that written down??
me: we communicate in the viking tradition. Let
me tell you the saga of that system.

RETWEETS LIKES

878 713

2:34 PM - 10 Feb 2014

* 17 3 878 ¥ 713

SAGAS

Hector Garcia-Molina
Kenneth Salem

Department of Computer Science
Princeton University
Princeton, NJ 08544

Abstract

Long lived transactions (LLTs) hold on to
database resources for relatively long periods of
time, significantly delaying the termmnation of
shorter and more common transactions To
alleviate these problems we propose the notion of
a saga A LLT 1s a saga if 1t can be written as a
sequence of transactions that can be interleaved
with other transactions The database manage-
ment system guarantees that either all the tran-
sactions 1n a saga are successfully completed or
compensating transactions are run to amend a
partial execution Both the concept of saga and
1ts 1mplementation are relatively simple, but they

have the potential to improve performance
aienificantly We analvze the various imnlemen-

the majority of other transactions either because
it accesses many database objects, 1t has lengthy
computations, 1t pauses for inputs from the users,
or a combination of these factors Examples of
LLTs are transactions to produce monthly
account statements at a bank, transactions to
process claims at an 1insurance company, and
transactions to collect statistics over an entire
database [Gray8la]

In most cases, LLTs present serious perfor-
mance problems Since they are transactions, the
system must execute them as atomic actions, thus
preserving the consistency of the
database [Date8la,Ullm82a] To make a tran-
saction atomic, the system usually locks the
obiects accessed bv the transaction until 1t com-

Types of Sagas

"Backward Recovery
"Forward Recovery
=“Recovery Blocks”
"Parallel Sagas

Sagas in Erlang

The Big Idea

Fold over a list of closures...

The Big Idea

Fold over a list of closures...
...unless there’s an error.

The Big Idea

Fold over a list of closures...
...unless there’s an error;
Then, fold over a list of closures.

Flows

Forward 1 Forward 2 Forward 3 Forward 4 Forward 5

Rollback 1 Rollback 2 Rollback 3 Rollback 4 Rollback 5

Flows

Forward 1 Forward 2 Forward 3 Forward 4 Forward 5

Rollback 1 Rollback 2 Rollback 3 Rollback 4 Rollback 5

Flows

Forward 1 Forward 2 Forward 3 Forward 4 Forward 5

Rollback 1 Rollback 2 Rollback 3 Rollback 4 Rollback 5

Flows

Forward 1 Forward 2 Forward 3 Forward 4 Forward 5

Rollback 1 Rollback 2 Rollback 3 Rollback 4 Rollback 5

Forward 1 Forward 5

Rollback 1 Rollback 5

Flows

Forward 1 Forward 2 Forward 3 Forward 4 Forward 5

Rollback 1 Rollback 2 Rollback 3 Rollback 4 Rollback 5

Flows

Forward 1 Forward 2 Forward 3 Forward 4 Forward 5

Rollback 1 Rollback 2 Rollback 3 Rollback 4 Rollback 5

Flows

Forward 1 Forward 2 Forward 4 Forward 5

Rollback 1 Rollback 2 Rollback 3 Rollback 4 Rollback 5

Flows

Forward 1 Forward 2

Rollback 1 Rollback 2 Rollback 3

Flows

Forward 1 Forward 2

Rollback 1 Rollback 2 Rollback 3

Flows

Forward 1 Forward 2

Rollback 1 Rollback 2 Rollback 3

Flows

Forward 1 Forward 2

Rollback 1 Rollback 2 Rollback 3

000 < [l (e BANO) 0 || = & GitHub, Inc. github.com/mrallen1/gisla ¢ (4] t]
Search NixOS packages VisuAlgo - vi..ugh animation Clip to OneNote Pullguote E
) . . (J
This repository Pull requests Issues Gist A +- ’ v
Il mrallen1/ gisla @Unwatch~ 3 &Star 22 YFork 0
<> Code) lssues 0 Il Pull requests 0 I'l| Projects 0 == Wiki 4~ Pulse lili Graphs £ Settings
A library that implements the sagas pattern for Erlang Edit
D 16 commits ¥ 2 branches © 1release 42 1 contributor sfs MIT
Branch: master v New pull request Create new file Upload files Find file
3 mrallen1 Set version 1.0.0 Latest commit b4tb223 on Sep 26, 2016
B include Change status -> result 4 months ago
i src Set version 1.0.0 4 months ago
B .gitignore Ignore rebar.lock 4 months ago
B LICENSE Initial commit 4 months ago
E) README.md Rewrite README 4 months ago
[rebar.config rebar3 ftw 4 months ago
README.md
Gisla

Terminology

"Operation
=Step
*"Transaction

Terminology

_

Forward 1

Rollback 1

Forward 2

Rollback 2

~

/

-

Forward 3

Rollback 3

~

J

-

Forward 4

Rollback 4

/

Forward 5

Rollback 5

/

I
__& Tyler Treat m y
@tyler_treat
Sagas are a great pattern for highly available

microservices, but don't screw it up with slow
and fragile messaging.

. BLIEEN
7 4 N A - @\,'}_El Q

3:47 PM - 25 May 2017 from Broomfield, CO

“ 1 3 V7 =

Implicit
Assumptions and
Requirements

Compensating
Closures
Cannot Abort

ldempotent
Requests

What if??

Forward 1 Forward 2

Rollback 1 Rollback 2 Rollback 3

What if??

Forward 1 Forward 2 Forward 3 Forward 4

Rollback 1 Rollback 2 Rollback 3

Futures in Erlang

Why does Erlang
need futures?!

It doesn’t!
cxcept...

Asynchronous Saga
Operations

00O < El} (o) @ (4) @ GitHub, Inc. github.com/mralleni/criswell) (4] t ()]

Search NixOS packages VisuAlgo - vi..ugh animation Clip to OneNote Pullquote m
. . . (J
O This repository Pull requests Issues Gist A +~ 3 -
LI mrallen1 / criswell @uUnwatch~ 3 HStar 4 YFork 0
<> Code Dlssues 0 Il Pull requests 0 Il Projects 0 EE Wiki 4~ Pulse il Graphs £} Settings
"Future events such as these will affect you in the future" - Futures for Erlang Edit
D 3 commits 1 branch © Oreleases 42 1 contributor
Branch: master v New pull request Create new file Upload files Find file
’ mrallen1 Add await/1 and a promise() type def Latest commit @97895b 15 days ago
B include Add await/1 and a promise() type def 15 days ago
i src Add await/1 and a promise() type def 15 days ago
i test Add a basic test 15 days ago
[.gitignore Initial commit 15 days ago
E) LICENSE Initial commit 15 days ago
E README.md Add await/1 and a promise() type def 15 days ago
README.md
.
Criswell

Implementation

Semantics?

Property Based Tests

What is it?

=Write one or more invariants

sTest values are automatically generated and the invariant tested
"Failures are shrunk to the smallest possible failure case

*"Modify code (or test case) and restart test

sTests are usually timeboxed

"Extremely useful to build confidence in complex scenarios

Academic history

QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs

QuickCheck:
A Lightweight Tool for Random Testing
of Haskell Programs

Koen Claessen
Chalmers University of Technology

koen@cs.chalmers.se

ABSTRACT

QuickCheck is a tool which aids the Haskell programmer in
formulating and testing properties of programs. Properties
are described as Haskell functions, and can be automati-
cally tested on random input, but it is also possible to de-
fine custom test data generators. We present a number of
case studies, in which the tool was successfully used, and
also point out some pitfalls to avoid. Random testing is es-
pecially suitable for functional programs because properties
can be stated at a fine grain. When a function is built from
separately tested components, then random testing suffices
to obtain good coverage of the definition under test.

1. INTRODUCTION

Testing is by far the most commonly used approach to
ensuring software quality. It is also very labour intensive,
accounting for up to 50% of the cost of software develop-
ment. Despite anecdotal evidence that functional programs
require somewhat less testing (‘Once it type-checks, it usu-
ally works’), in practice it is still a major part of functional
program development.

The cost of testing motivates efforts to automate it, wholly
or partly. Automatic testing tools enable the programmer
to complete testing in a shorter time, or to test more thor-
oughly in the available time, and they make it easy to repeat
tests after each modification to a program. In this paper we
describe a tool, QuickCheck, which we have developed for
testing Haskell programs.

Functional programs are well suited to automatic testing.
It is generally accepted that pure functions are much easier
to test than side-effecting ones, because one need not be
concerned with a state before and after execution. In an
imperative language, even if whole programs are often pure
functions from input to output, the procedures from which
they are built are usually not. Thus relatively large units

John Hughes
Chalmers University of Technology

rjmh@cs.chalmers.se

monad are hard to test), and so testing can be done at a
fine grain.

A testing tool must be able to determine whether a test
is passed or failed; the human tester must supply an auto-
matically checkable criterion of doing so. We have chosen
to use formal specifications for this purpose. We have de-
signed a simple domain-specific language of testable specifi-
cations which the tester uses to define expected properties
of the functions under test. QuickCheck then checks that the
properties hold in a large number of cases. The specifica-
tion language is embedded in Haskell using the class system.
Properties are normally written in the same module as the
functions they test, where they serve also as checkable doc-
umentation of the behaviour of the code.

A testing tool must also be able to generate test cases au-
tomatically. We have chosen the simplest method, random
testing [11], which competes surprisingly favourably with
systematic methods in practice. However, it is meaningless
to talk about random testing without discussing the distri-
bution of test data. Random testing is most effective when
the distribution of test data follows that of actual data, but
when testing reuseable code units as opposed to whole sys-
tems this is not possible, since the distribution of actual
data in all subsequent reuses is not known. A uniform dis-
tribution is often used instead, but for data drawn from
infinite sets this is not even meaningful — how would one
choose a random closed A-term with a uniform distribution,
for example? We have chosen to put distribution under the
human tester’s control, by defining a test data generation
language (also embedded in Haskell), and a way to observe
the distribution of test cases. By programming a suitable
generator, the tester can not only control the distribution
of test cases, but also ensure that they satisfy arbitrarily
complex invariants.

An important design goal was that QuickCheck should be
lightweight. Our implementation consists of a single pure

Implementations for

"Go
=C/C++

=Clojure

=Scala

*Haskell (of course)

=... lots of others ...

=Erlang/Elixir (watch Thomas Arts talk at ElixirConf EU 2015)

Erlang implementations

=Quviq Commercial QuickCheck (http://www.quvig.com)

“Free (but not open source) “QuickCheck mini” — doesn’t do
statem

=PropEr (https://github.com/manopapad/proper)
*Triq (https://github.com/trigng/triq)

Generators

sAll standard basic types:
" integers,
= floats,
= atoms,
= binaries,
=strings,
= |ists

=Lists of basic types
=User defined generators using ?LET and ?SUCHTHAT

Propositions

“?FORALL(Variable, generator_function(), test_function(Variable))

Resources

shttps://github.com/mrallenl/gisla

=https://github.com/mrallen1/criswell

=Sagas paper: http://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf

"Caitie McCaffrey, Papers We Love on Sagas:
https://youtu.be/7dc4TI5ZHRg?t=27m16s

=Caitie McCaffrey, Distributed Sagas:
https://speakerdeck.com/caitiem20/distributed-sagas-a-protocol-for-
coordinating-microservices

=sThese slides: https://speakerdeck.com/mrallenl/sagas-distributed-transactions-
without-locks

