
EUC 2017 Stockholm - 06/2017

Building a database  
from scratch

benoît chesneau

craftsman working on P2P and custom data
endpoints technologies

opensource only

enki multimedia : the corporate interface

about me

versatile data endpoint

micro-services, message solutions are all based
about custom data endpoints

need for a simple solution that allows you to bring
the data near your service or locally.

why barrel?

a modern database

documents, with time and attachments

distributed, local first

bring a view of your data near your application

automatic indexing

focus on simplicity

what is barrel?

distributed: P2P

query

a partial view of the data

node

node

local databasemobile

sensor

"cloud" database

local database

a partial view of the data

agnostic indexing

barrel can be embedded in your own Erlang
application:

local database

no need to cache

platform release: HTTP/Erlang pod to store and
query the documents

platform

problems to solve

stateful

different queries return different results

update expectations

read your own write?

database complexity

processes don’t share anything

how do we have multiple writers and multiple
readers

actor model

no integer atomic operations

IO operations are “slow”

until you get nifs

erlang constraints

build over existing storage solutions:

key/value interface

allows atomic batch updates

ordered set

1 collection, 1 storage

collections are small

decisions

hierachical

dbs db docs

a collectionmultiple collections  
on a node

store

document:

map in erlang

revision tree:

https://oceanstore.cs.berkeley.edu/publications/
papers/pdf/hh_icdcs03_kang.pdf

storing a document

https://oceanstore.cs.berkeley.edu/publications/papers/pdf/hh_icdcs03_kang.pdf
https://oceanstore.cs.berkeley.edu/publications/papers/pdf/hh_icdcs03_kang.pdf

revision tree

2 modes: lazy and consistent

lazy: indexed asynchronously based on the
changes feed

consistent

support maps, filter, chain opererations based on
paths

indexing

internals

using rocksdb for the storage

http://gitlab.com/barrel-db/erlang-rocksdb

used for memory and disk. optimised for SSD.

dirty nifs

rocksdb

http://gitlab.com/barrel-db/erlang-rocksdb

barrel_sup db_sup db

db

db supervision

store

writes are queued on the main db process

store a canonical version of doc

states of the database is shared between other
processes via ETS

readers are getting last db state via ets

write process (current)

prevent delayed jobs

write more operations at once

selective receive

group operations based on the document ID
(merge)

from 40 RPS to 1000 RPS on a node with 4GB of
ram and 2 cores)

write process (current)

By ID, Changes queries

get latest DB state from ETS

everything happen on the reader process

coming: backpressure

share the db state across a pool of readers

remove the state from ETS

readers

testing dispatching of write operations on different processes:

https://arxiv.org/pdf/1509.07815.pdf

testing optimistic writes

back pressure:

short circuit to not accept more write than the node can
sustain

based on the running transaction and metrics

similar to safety valve:  
https://github.com/jlouis/safetyvalve

write process rewrite

https://arxiv.org/pdf/1509.07815.pdf
https://github.com/jlouis/safetyvalve

just appending data to the storage we never read
from old index values

inside the DB process for consistent write

a process listening on db updates events (using a
simple gen_server, no gen_event)

index policies to index each json segment to retrive
via their valur or hash to support value or range
queries.

indexing process

over HTTP

 cowboy 2

over TCP using teleport and Erlang serialisation
(coming):

https://gitlab.com/barrel-db/teleport

allows embedded mode

replication

https://gitlab.com/barrel-db/teleport

add some instrumentation

how to not block without counting

first try: statsd client sending to an UDP endpoint
counter/gauge/histogram updates

we run out of processes & file descriptors

asynchronous sending: better.

how to make generic?

instrumenting

add hooks

https://github.com/benoitc/hooks

prometheus plugin and wombat support (EE
version)

internal metrics sytem

https://gitlab.com/barrel-db/lab/instrument

instrumenting

https://github.com/benoitc/hooks
https://gitlab.com/barrel-db/lab/instrument

roamap

0.9 release: 2017/06/13

https://gitlab.com/barrel-db/barrel-platform

add documentation (june 2017)

optimise writing

atomic updates

enrich query engine.

roadmap

https://gitlab.com/barrel-db/barrel-platform

?

twitter: @barreldb
web: https://barrel-db.org

contact

