AN

\ N

AN

JONAS BONER

CT0 Lightbend

@jhoner

L

LS,
 dng i 8
>

Y
o
-

v’"
e

<

-}
“} ' 9 L

V. =

t ¥
: 9 !::

{4 “ L4

:

-

&np:

LI F ey
«X.3

-y

e

\\\

-—

\'qa

- ROCKY BALBOA

Mool

p '//;/i'f:/"
o/

ou re hit

i o

B
]
-
}
E
!
a
L
Z
/T//
¢

“The ability of a substance or
object to spring back into shape.
The capacity to recover quickly
from difficulties.”

“Antifragility Is beyond resilience and
robustness. The resilient resists shock and
stays the same; the antifragile gets better.”

Antifragile: Things That Gain from Disorder - Nassim Nicholas Taleb

“We can model and understand in isolation.
But, when released into competitive nominally
regulated societies, their connections proliferate,
their interactions and interdependencies multiply,
their complexities mushroom.

And we are caught short.”

Drift into Failure - Sidney Dekker

™.

1

-

el e -
AR\

i"
{7

o
i
o e
fr 95 _2ve

u (Pt

W I R e TR L
RN T g
\‘.: ¥ '_‘\\‘\ -‘",.',“ -)-‘-‘ - -
.:'\ ““ .'&.' ~e . ;l \.{‘ A ol
b S ‘*.':Sf‘=".\“§‘-“‘?ﬁ.‘a".-=.r-
V- WAL bty ¥ e \‘Q\‘.‘M
R M
oA

o

WE NEED TO STUDY

/%é%///

E

| A"

st RN) N Ei ‘Ei e e o
s
3
0
'ii
1]
X
o’

L
5

1. o 5 o
o1 [T

LE M'bﬁg’ie' L
YL' 5 Gl SRy R

.;
; : 458
_lmmlmﬂla a0 P AN (.

o Tl N o L TR = G TR e o F

.lu.ﬂ__....& L.PQ
.Ln-__:_.w] =

= i A

1 ey

.-

e o e _.!T. B l.ll
RO,

L
H
)
-1
£
3

if_
5
3
-
T
g
3
;

= =
LTS T
=2l -
i Ul G

OB %

15

g == ey EELLE e B R [

COMPLICATED COMPLEX

“Complex systems run in degraded mode.”
“Complex systems run as broken systems.”

How Complex Systems Fail - Richard Cook

“Counterintuitive. That's [Jay] Forrester’s
word to describe complex systems.
Leverage points are not intutive. Or if they
are, we intuitively use them backward,
systematically worsening whatever
problems we are trying to solve.”

Leverage Points: Places to Intervene in a System - Donella Meadows

“Humans should not be
Involved in setting timeouts.”
“Human involvement In
complex systems Is the biggest
source of trouble.”

Economic
Failure

Boundary
Accident

Boundary

Operating Point

FAILURE

Unacceptable
Workload
Boundary

“Going solid”: a model of system dynamics and consequences for patient safety - R Cook, J Rasmussen
Resilience in complex adaptive systems: Operating at the Edge of Failure - Richard Cook - Talk at Velocity NY 2013

Economic

Failure
Boundary
Accident
Boundary
>
Counter Gradient

For More Resilience

Unacceptable
Workload
Boundary

“Going solid”: a model of system dynamics and consequences for patient safety - R Cook, J Rasmussen
Resilience in complex adaptive systems: Operating at the Edge of Failure - Richard Cook - Talk at Velocity NY 2013

Economic
Failure

Boundary
Accident

Boundary

< Marginal
Boundary

Error Margin

Unacceptable
Workload
Boundary

“Going solid”: a model of system dynamics and consequences for patient safety - R Cook, J Rasmussen
Resilience in complex adaptive systems: Operating at the Edge of Failure - Richard Cook - Talk at Velocity NY 2013

\)

@

\

—
(1°]

lm
=]
S
G

=

Accident
Boundary

Boundary

. J Rasmussen

R Cook

: a model of system dynamics and consequences for patient safety

1

Going solid
Resilience in complex adaptive systems: Operating at the Edge of Failure - Richard Cook - Talk at Velocity NY 2013

11

" Marginal
Boundary

‘e
»
.
.
»
»
.
G
.
.
G
.
.
.
.
‘e
.
G
e
‘e
G
e
.
‘e
e
e
e,
",

-

Accident
Boundary

,/./,./// N
AN

. J Rasmussen

R Cook

: a model of system dynamics and consequences for patient safety
Resilience in complex adaptive systems: Operating at the Edge of Failure - Richard Cook - Talk at Velocity NY 2013

1,

Going solid

11

\

Ak /%

N

~

AR\

DN

1.\\ NN

N

Z
7

“Autonomy makes information local.
leading to greater certainty and stability.”

In Search of Certainty - Mark Burgess

O'REILLY"

“Truly, a blueprint for the systems of tomorrow.”
-Mike Dvorkin, Distinguished Engineer at Cisco

THINKING IN

PROMISES [k
COMMANDS =

MARK BURGESS

PROMISES CONVERGE COMMANDS DIVERGE

A DEFINITE UNPREDICTABLE
UNPREDICTABLE DEFINITE
IMPROVED STABILITY DECREASED STABILITY

C»wwu‘gwnck

a

%// e

-
:

O W

-’-

“In three words, in the animal kingdom,
simplicity leads to complexity
which leads to resilience.”

Puppies! Now that I've got your attention, complexity theory - Nicolas Perony, TED talk

\
N

oy
////////

A8

\

UNDERSTANDING VITAL SERVIGES, AND HOW THEY KEEP YOU SAFE

INDIVIDUAL

WAYS T0 DIE

SETS OF ESSENTIAL SERVICES

LAYERS OF PROTECTION

AN

///,/
a\a\

FEATURE DIVERSITY AND REDUNDANCY

CONNECTED NETWORK STRUCTURE

WIDE DISTRIBUTION ACROSS ALL SCALES

CAPACITY TO SELF

INTER-

ADAPT & SELF-ORGANIZE

N
N\

G

N

S
W

\

Our Disaster Recovery Plan
Goes Something Like This...

N ®

,,///////

A

A ,.:_.,wﬁ \ \ //// O\

\

CRASH SAFELY
RECOVER FAST

Recursive Restartability: Turning the Reboot Sledgehammer into a Scalpel - George Candea, Armando Fox

Object

Client

Critical state
that needs protection

Thread boundary

Thread boundary

Synchronous dispatch

{UTTERLY BROKEN &

“Accidents come from relationships
not broken parts.”

Drift into Failure - Sidney Dekker

N
@ i
S

N\

D

N

MANAGED—

REIFIED—

4 f
Y

LY
e |‘A\‘M ‘:l%;." WY
:: lﬁ ‘, “)') 4 oY o

.i‘ﬁi W) S
LR

.......

anma
\ //////
NANN

AN

UNTIL MORALE IMPROVES

,.w?nms\%

Adrian S. Bruce ©2004 www.artandtechnology.com.au

THE BEATINGS WILL CONTINUE

INPUT DATA

DERIVED DATA

Out of the Tar Pit - Ben Moseley , Peter Marks

WE NEED A WAY OUT OF THE

THE

Inserts coins

Add more coins

<

“—__ Getscoffee

Programmer

Coffee
Machine

@
£
£
o
=
2
o

= //, -

r,/‘ QL)
QA

SUPervisor

ManaQES
Failure

= =
5 g
—
—
|C. S
IIF
o
o
<T

Validation Error

<

client

-

yrmstrong

AN
AW
//%/,./////////

\S
.,,,/W.,./. S

— > \
l. .

e prese

N
. R N\
5 mms
' N - . W S “o
- N e - L - i
R \\\ N\
o \ A\ % \

d Crashes - J€

\
AN\ N
>
.
.r

=
4

RN

.
»

\ ,//f/

‘III

Error Kernel

‘-------------------.
il IH = H E = - E - - = = = =

) J

aa m EE =

LET'S MODEL A RESILIENT VENDING MACHINE, IN AKKA

object VendingMachineDemo extends App {

—~
-
Q
oly}
©
C
©

=
Q
c

‘-

e
@)
©

=
Q
Q

Y

4
o)
@)

—
-
Q
Ty}
©
C
©

=
Q
c

‘-

e
@)
©

=
Q
Q

Y

4
@)

)

—
0
o
®)
C

o

A

4

o
|\
®)

)
©)
©
e
Q

)
0
>
0

Y
@)
e
()

()]
)
C

=

e
(©)
©

=
(oY)
C

‘'

O
(e
)
>

N—
=
)

)
0]
>

(Vp]
[
(@)

)
@)

<

val coffeeMachine

val system
val customer

Inbox.create(system) // emulates the customer

// test runs

system.shutdown ()

}

—~
O —~
" N
) ~
L w0
o C
Q. r
n O
w O
(- PN
© O

C
+
o C
b O

©
O =
cC o
©

Y
v Y4
c O
‘— O
O ~—
O O

-
N O

0
P .
|
o O
v &
c O
H

7))
~
~ O

VS
VS
@)
n
n
Q
.

Q.
n
Ll
N—
-
@
o
i
O
Q
—)
Q
Vg
)
c
o
-
O
©
=
)
Q
4—
4—
O
O
N—
O
-
Q
n
-
Q
=
O
Iy
n
)
O

customer.receive(5.seconds)

println(s"Got myself an $coffeel)

val Beverage(coffeel)

Espresso)

assert(coffeel

customer.send(coffeeMachine, Coins(1l))
customer.send(coffeeMachine, Selection(Latte))

val NotEnoughCoinsError(message) = customer.receive(5.seconds)
println(s"Got myself a validation error: $message'")
assert(message == "Please insert [1] coins")

// Insert 1 coin (had 1 before) and try to get my Latte
// Machine should:

// 1. Fail

// 2. Restart

// 3. Resubmit my order

// 4, Give me my coffee

customer.send(coffeeMachine, Coins(1l))
customer.send(coffeeMachine, TriggerOutOfCoffeeBeansFailure)
customer.send(coffeeMachine, Selection(Latte))

val Beverage(coffee2) = customer.receive(5.seconds)
println(s"Got myself a $coffee2")

assert(coffee2 == Latte)

// Coffee types

trait CoffeeType

case object BlackCoffee extends CoffeeType
case object Latte extends CoffeeType

case object Espresso extends CoffeeType

// Commands

case class Coins(number: Int)

case class Selection(coffee: CoffeeType)
case object TriggerOutOfCoffeeBeansFailure

// Events
case class CoinsReceived(number: Int)

// Replies
case class Beverage(coffee: CoffeeType)

// Errors
case class NotEnoughCoinsError(message: String)

// Failures

case class OutOfCoffeeBeansFailure(customer: ActorRef,
pendingOrder: Selection,
nrOfInsertedCoins: Int) extends Exception

Unit

= false

{

override def postRestart(failure: Throwable)

0)]
cC
‘— C
O ® O
O O C
© M r
O O O
+ O O
C 4 Y
U 4 O
0w O L«
cCc O =
H Y4~ ~
4- O ©
o ¥ ¥
. 35 O
c O +
| G
M @© ©
> > >

N
Il
)
O

‘'
-
o

—
©
>

def receive

-
-
O
Iy
@)
<C
n
—
C
)
s
X
)
)
-
o
-
O
©
=
)
Q
4—
Y—
O
O
n
n
©
_L
O

def receive = {
case Coins(nr) =>
nrOofInsertedCoins += nr
totalNrOfCoins += nr
println(s"Inserted [$nr] coins")
println(s"Total number of coins in machine 1is [$totalNrOfCoins]")

case selection @ Selection(coffeeType) =>
1f (nrOfInsertedCoins < price)
sender.tell(NotEnoughCoinsError (

s”Insert [${price - nrOfInsertedCoins}] coins"), self)
else {
it (outOfCoffeeBeans)
throw new OutOfCoffeeBeansFailure(sender, selection, nrOfInsertedCoins)
println(s"Brewing your $coffeeType")
sender.tell(Beverage(coffeeType), self)
nrOfInsertedCoins = 0

case TriggerOutOfCoffeeBeansFailure =>
outOfCoffeeBeans = true

override def postRestart(failure: Throwable): Unit = {
println(s"Restarting coffee machine...")

failure match {
case OutOfCoffeeBeansFailure(customer, pendingOrder, coins) =>
nrOfInsertedCoins = coins
outOfCoffeeBeans = false
println(s"Resubmitting pending order $pendingOrder")
context.self.tell(pendingOrder, customer)

class CoffeeMachineManager extends Actor {
override val supervisorStrategy =
OneForOneStrategy (maxNrOfRetries = 10, withinTimeRange = 1l.minute) {

case e: OutOfCoffeeBeansFailure =>
println(s"ServiceGuy notified: $e")
Restart

case _: Exception =>
Escalate

// to simplify things he is only managing 1 single machine
val machine = context.actorOf(
Props[CoffeeMachine], name = "coffeeMachine")

def receive = {
case request => machine.forward(request)

}

ARE WE DONE
BUT NOT REALLY

I/
,J,n._
)) I\ I
|

»

-

iR &R 68 MA@ A&

¥y |

LEFTTY) ¥
' ey "

..‘....-...».?tbr.

-
LN A

R A A e e e

h.l. > _y

-

e
.ﬁ: Ll

r_'AQ

~~
i

“,,.,//,/, : » R
/ /,//,//” N \

HERE, WE ARE LIVING IN THE

i

ol

oL
—
oL
_—
LLJ
oL
—_—
(a—
AR

LLJ
—
oo
(I
(I
|
.
—
L
>
D
—
-
—
.
(e
—
|
D

» Autonomous Microservices -« Decentralized Architectures

o

 Resilient Protocols &=« Gossip Protocols
- o Virtualizaton Failure Detection

- .

« Eventual & Causal Consistency

o Event Logging =S
e Flow Control / Feedback Control

AUTONOMY ey
soamion e EERERE

Oooo O

MOBILITY NONOLTTHIO/LAYERED MICRO SERVICE

SINGLE RESPONSIBILITY
EXCLUSIVE STATE

CAN ONLY PROMI

ITS OWN BEHAVIOR

OUR CURRENT PRESENT—STATE

BLAST FROM THE PAST—TFACTS

HOPE FOR THE FUTURE—COMMANDS

|
|
M
i
{
i
|
ot
|
e !
_,M
I
.ﬂ
\ ¢
|
-

|

S Sl

S

Wi g

3
b5
N o~
L
-
N -
”, - u/.-

4
- =
g\

5

Jaw\f,\'
o o
palb
\
|

X

4

WE NEED SYSTEMS THAT ARE DECOUPLED IN

7 /7 e 7 7
2

A,

ASYNCHRONOUS
DISTRIBUTION FIRST CLASS
MISTAKES OF RPG EJB CORBA
LOCATION TRANSPARENCY
ACTOR MODEL

ONE COMMUNICATION ABSTRACTION

ACROSS ALL DIMENSIONS OF SCALE

CORE
CONTAINER

GPU

SOCKET

RACK
GLOBAL

SERVER

DATA CENTER

\
\ //,/
AN L

WY N\

DEPEND

ASYNCHRONOUS COMMUNICATION

EVENTUAL CONSISTENCY

ARE TOLERANT

EMBRAGE

ASSOCIATIVE

MESSAGE
MESSAGE
MESSAGE

COMMUTATIVE
IDEMPOTENT
DISTRIBUTED

“To make a system of interconnected components
crash-only, it must be designed so that components
can tolerate the crashes and temporary unavailability
of their peers. This means we require: [1] strong
modularity with relatively impermeable component
boundaries, [2] timeout-based communication and
lease-based resource allocation, and [3] self-
describing requests that carry a time-to-live and
Information on whether they are idempotent.”

Crash-Only Software - George Candea, Armando Fox

"Software components should be designed such
that they can deny service for any request or call.
Then, if an underlying component can say No.
apps must be designed to take No for an answer
and decide how to proceed: give up, wait and
retry, reduce fidelity, etc.”

Recursive Restartability: Turning the Reboot Sledgehammer into a Scalpel - George Candea, Armando Fox

NN

MEMBER
NODE

MEMBER
NODE

MEMBER
NODE

27

— |

— |

—

MEMBER
NODE

MEMBER
NODE

\
fAILURE DETEC [ION HEARTBEAT

MEMBER
NODE

MEMBER
NODE

A
\
\

\

D

MEMBER
NODE

MEMBER
NODE

MEMBER
NODE

AR

WRONG DEFAULT

“Two-phase commit is the
anti-availability protocol.”

Standing on Distributed Shoulders of Giants - Pat Helland

WE HAVE TO RELY ON

, IT'S HOW THE WORLD WORKS

AN

\

N

“In general, application developers

simply do not implement large

scalable applications assuming
distributed transactions.”

Life Beyond Distributed Transactions - Pat Helland

W

\

“The truth is the log. The database Is a
cache of a subset of the log.”

Immutability Changes Everything - Pat Helland

\
\

N\

n.loving memory of two

e

< =
ot
) N "
E >
. "
~
:

L)
ks
-
o)

()

(@)

-

4]
<

(&)
it

4y
2
odnad

v

<

@)
e

(4]

| S

@
Q.
o

T
| -
O
s

"

G 7

oM

I

\

N\ N N
///, //%//W//W QA

A

, Uw ayR.

5 y l-)

Sl

Ay Z._4 ﬂs %. A.’ﬂ
[

EPLICATION

AVOIDS 00-RELATIONAL IMPEDENCE MISMATCH
CORS—SEPARATE THE READ & WRITE MODEL

'

!!'

|

~
a3

W
/wé/@

SR

R\

\

LET'S MODEL A RESILIENT & EVENT LOGGED VENDING MACHINE, IN AKKA

// Events
case class (number: Int)

class CoffeeMachine extends PersistentActor {
val price = 2
var nrOfInsertedCoins = 0
var outOfCoffeeBeans = false
var totalNrOfCoins = 0

override def persistenceld = "CoffeeMachine"

override def : Receive = {
case =>
nrOfInsertedCoins += nr
println(s"Inserted [$nr] coins")
{ evt =>
totalNrOfCoins += nr
println(s"Total number of coins in machine 1is [$totalNrOfCoins]")

}

override def : Receive = {
case =>
totalNrOfCoins += coins
println(s"Total number of coins in machine 1is [$totalNrOfCoins]")

https://gist.github.com/jboner/1db37eeee3ed3c?422e4

“An escalator can never break: it can only
become stairs. You should never see an
Escalator Temporarily Out Of Order sign, just
Escalator Temporarily Stairs. Sorry for the
convenience.

Closed
on call / pass through
call succeeds / reset count
call fails / count failure
threshold reached / trip breaker

Open

on call / fail
on timeout / attempt reset

trip breaker

attemgt reset

trip breaker

Half-Open

on call / pass through
call succeeds / reset
call fails / trip breaker

Ll
=
—
Ll
(2]
—
[—]
Q.
(7]
Lil
(="~
=

L: QUEUE LENGTH

i/

J

A

/////////

“Continuously compare the actual
output to its desired reference value;
then apply a change to the system
Inputs that counteracts any deviation of
the actual output from the reference.”

Feedback Control for Computer Systems - Philipp K. Janet

et-Point

Error_Value

Derivative
de(t)

New Feedback Value

High Proportional Gain (K
=110 P (Kp)

Low Proportional Gain (Kp)

Set Point

High Integral Gain (Ki)

\Optimal Integral Gain (Ki)

Set Point

\
W

(7

ne constants, parameters or numbers
ne sizes of buffers relative to their flows

ne structure of material stocks and flows

ne lengths of delays, relative to the rate of system change
ne strength of negative feedback loops

ne gain around driving positive feedback loops

ne structure of information flows

ne rules of the system

ne power to add, change, evolve, or self-organize structure

ne goals of the system
ne mindset or paradigm out of which the system arises

ne power to transcend paradigms

FOLLOW THE RULES
CHANGE THE RULES
LEARN HOW TO LEARN

Single-Loop Learning

Are we doing things right?
Double-Loop Learning

Are we doing the right things?

Triple-Loop Learning

How do we decide what is right?

mm
w
3
<
B
8%

(O]
£Z
@

;
.
;
F
v
5

OF GOOD FEELING LIKE

WERE FEELING
CONFIDENT

YOU SCHEDULED THE
END OF THE TEST PHASE
AFTER THE START OF

THE PRODUCTTION PHASE.

WHAT CAN WE LEARN FROM ARNOLD?

74 o
: |
*

O'q

BLOW THINGS UP

) SEE WHAT HAPPENS

oo amazon

W
)

N\

=

N

“Complex systems run as broken systems.”

How Complex Systems Fail - Richard Cook

~

AR\

DN

1.\\ NN

N

Z
7

N

o Drift into Failure - http://www.amazon.com/Drift-into-Failure-Components-Understanding-ebook/dp/BO09KOKXKY

© How Complex Systems Fail - http://web.mit.edu/2.75/resources/random/How %20Complex%20Systems % 20Fail.pdf

o Leverage Points: Places to Intervene in a System - http://www.donellameadows.org/archives/leverage-points-places-to-intervene-in-a-system/

© Going Solid: A Model of System Dynamics and Consequences for Patient Safety - http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1743994/

o Resilience in Complex Adaptive Systems: Operating at the Edge of Failure - https://www.youtube.com/watch?v=PGLYEDpNu60

o Puppies! Now that I’'ve got your attention, Complexity Theory - https://www.ted.com/talks/
nicolas_perony puppies now_that i ve got your attention_complexity theory

o How Bacteria Becomes Resistant - http://www.abc.net.au/science/slab/antibiotics/resistance.htm

o Towards Resilient Architectures: Biology Lessons - http://www.metropolismag.com/Point-of-View/March-2013/Toward-Resilient-Architectures-1-Biology-Lessons/

o Dealing in Security - http://resiliencemaps.org/files/Dealing in Security.July2010.en.pdf

© What is resilience? An introduction to social-ecological research - http://www.stockholmresilience.org/download/18.10119fc11455d3c557d6d21/1398172490555/
SU SRC whatisresilience sidaApril2014.pdf

© Applying resilience thinking: Seven principles for building resilience in social-ecological systems - http://www.stockholmresilience.org/download/
18.10119fc11455d3¢c557d6928/1398150799790/SRC+Applying+Resilience+final.pdf

o Crash-Only Software - https://www.usenix.org/legacy/events/hotos03/tech/full papers/candea/candea.pdf

o Recursive Restartability: Turning the Reboot Sledgehammer into a Scalpel - http://roc.cs.berkeley.edu/papers/recursive restartability.pdf

o Out of the Tar Pit - http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.8928

o Bulkhead Pattern - http://skife.org/architecture/fault-tolerance/2009/12/31/bulkheads.html

© Making Reliable Distributed Systems in the Presence of Software Errors - http://www.erlang.org/download/armstrong thesis 2003.pdf

© On Erlang, State and Crashes - http://jlouisramblings.blogspot.be/2010/11/on-erlang-state-and-crashes.html

o Akka Supervision - http://doc.akka.io/docs/akka/snapshot/general/supervision.html
o Release It!: Design and Deploy Production-Ready Software - https://pragprog.com/book/mnee/release-it

o Feedback Control for Computer Systems - http://www.amazon.com/Feedback-Control-Computer-Systems-Philipp/dp/1449361692
o The Network in Reliable - http://queue.acm.org/detail.cfm?id=2655736

© Data on the Outside vs Data on the Inside - https://msdn.microsoft.com/en-us/library/ms954587.aspx

o Life Beyond Distributed Transactions - http://adrianmarriott.net/logosroot/papers/LifeBeyondTxns.pdf

© Immutability Changes Everything - http://cidrdb.org/cidr2015/Papers/CIDR15 Paper16.pdf

o Standing on Distributed Shoulders of Giants - https://queue.acm.org/detail.cfm?id=2953944

O Thinking in Promises - http://shop.oreilly.com/product/0636920036289.do

© In Search Of Certainty - http://shop.oreilly.com/product/0636920038542.do

o Reactive Microservices Architecture - http://www.oreilly.com/programming/free/reactive-microservices-architecture-orm.csp
o Reactive Streams - http://reactive-streams.org

o Vending Machine Akka Supervision Demo - https://qgist.github.com/jboner/d24c0eb91417a5ec10a6

o Persistent Vending Machine Akka Supervision Demo - https://qgist.github.com/jboner/1db37eeee3ed3c9422e4

http://www.amazon.com/Drift-into-Failure-Components-Understanding-ebook/dp/B009KOKXKY
http://web.mit.edu/2.75/resources/random/How%20Complex%20Systems%20Fail.pdf
http://www.donellameadows.org/archives/leverage-points-places-to-intervene-in-a-system/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1743994/
https://www.youtube.com/watch?v=PGLYEDpNu60
https://www.ted.com/talks/nicolas_perony_puppies_now_that_i_ve_got_your_attention_complexity_theory
https://www.ted.com/talks/nicolas_perony_puppies_now_that_i_ve_got_your_attention_complexity_theory
https://www.ted.com/talks/nicolas_perony_puppies_now_that_i_ve_got_your_attention_complexity_theory
http://www.abc.net.au/science/slab/antibiotics/resistance.htm
http://www.metropolismag.com/Point-of-View/March-2013/Toward-Resilient-Architectures-1-Biology-Lessons/
http://resiliencemaps.org/files/Dealing_in_Security.July2010.en.pdf
http://www.stockholmresilience.org/download/18.10119fc11455d3c557d6d21/1398172490555/SU_SRC_whatisresilience_sidaApril2014.pdf
http://www.stockholmresilience.org/download/18.10119fc11455d3c557d6d21/1398172490555/SU_SRC_whatisresilience_sidaApril2014.pdf
http://www.stockholmresilience.org/download/18.10119fc11455d3c557d6928/1398150799790/SRC+Applying+Resilience+final.pdf
http://www.stockholmresilience.org/download/18.10119fc11455d3c557d6928/1398150799790/SRC+Applying+Resilience+final.pdf
https://www.usenix.org/legacy/events/hotos03/tech/full_papers/candea/candea.pdf
http://roc.cs.berkeley.edu/papers/recursive_restartability.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.8928
http://skife.org/architecture/fault-tolerance/2009/12/31/bulkheads.html
http://www.erlang.org/download/armstrong_thesis_2003.pdf
http://jlouisramblings.blogspot.be/2010/11/on-erlang-state-and-crashes.html
http://doc.akka.io/docs/akka/snapshot/general/supervision.html
https://pragprog.com/book/mnee/release-it
http://www.amazon.com/Feedback-Control-Computer-Systems-Philipp/dp/1449361692
http://queue.acm.org/detail.cfm?id=2655736
https://msdn.microsoft.com/en-us/library/ms954587.aspx
http://adrianmarriott.net/logosroot/papers/LifeBeyondTxns.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper16.pdf
https://queue.acm.org/detail.cfm?id=2953944
http://shop.oreilly.com/product/0636920036289.do
http://shop.oreilly.com/product/0636920038542.do
http://www.oreilly.com/programming/free/reactive-microservices-architecture-orm.csp
http://reactive-streams.org
https://gist.github.com/jboner/d24c0eb91417a5ec10a6
https://gist.github.com/jboner/1db37eeee3ed3c9422e4

AN

\ N

AN

JONAS BONER

CT0 Lightbend

@jhoner

