
Without Resilience
Nothing Else Matters

Jonas Bonér
CTO Lightbend

@jboner

This Is Fault Tolerance

“But it ain’t how hard you’re hit;
it’s about how hard you can get
hit, and keep moving forward.
How much you can take, and
keep moving forward. That’s

how winning is done.”
- Rocky Balboa

Resilience
Is Beyond

Fault
Tolerance

Resilience
“The ability of a substance or

object to spring back into shape.
The capacity to recover quickly

from difficulties.”
-Merriam Webster

Antifragility

“Antifragility is beyond resilience and
robustness. The resilient resists shock and
stays the same; the antifragile gets better.”

- Nassem Nicholas Taleb

Antifragile: Things That Gain from Disorder - Nassim Nicholas Taleb

“We can model and understand in isolation.  
But, when released into competitive nominally

regulated societies, their connections proliferate,  
their interactions and interdependencies multiply,  

their complexities mushroom.  
And we are caught short.”

- Sidney Dekker

Drift into Failure - Sidney Dekker

Software Systems Today Are

Incredibly Complex

Netflix Twitter

We need to study

Resilience in

Complex
Systems

Complicated System

Complex System

Complicated ≠ Complex

“Complex systems run in degraded mode.”
“Complex systems run as broken systems.”

- richard Cook

How Complex Systems Fail - Richard Cook

“Counterintuitive. That’s [Jay] Forrester’s
word to describe complex systems.

Leverage points are not intuitive. Or if they
are, we intuitively use them backward,

systematically worsening whatever
problems we are trying to solve.”

- Donella Meadows

Leverage Points: Places to Intervene in a System - Donella Meadows

“Humans should not be
involved in setting timeouts.”

“Human involvement in
complex systems is the biggest

source of trouble.”
- Ben Christensen, Netflix

Humans Generally
Make Things Worse

‘‘Going solid’’: a model of system dynamics and consequences for patient safety - R Cook, J Rasmussen
Resilience in complex adaptive systems: Operating at the Edge of Failure - Richard Cook - Talk at Velocity NY 2013

Economic
Failure

Boundary

Unacceptable
Workload
Boundary

Operating Point

FAILURE

Accident
Boundary

Operating at the Edge of Failure

Economic
Failure

Boundary

Unacceptable
Workload
Boundary

Accident
Boundary

Management Pressure

Towards Economic Efficiency

Gradient Towards
Least Effort

Counter Gradient
For More Resilience

‘‘Going solid’’: a model of system dynamics and consequences for patient safety - R Cook, J Rasmussen
Resilience in complex adaptive systems: Operating at the Edge of Failure - Richard Cook - Talk at Velocity NY 2013

Operating at the Edge of Failure

‘‘Going solid’’: a model of system dynamics and consequences for patient safety - R Cook, J Rasmussen
Resilience in complex adaptive systems: Operating at the Edge of Failure - Richard Cook - Talk at Velocity NY 2013

Economic
Failure

Boundary

Unacceptable
Workload
Boundary

Accident
Boundary

Error Margin

Marginal
Boundary

Operating at the Edge of Failure

‘‘Going solid’’: a model of system dynamics and consequences for patient safety - R Cook, J Rasmussen
Resilience in complex adaptive systems: Operating at the Edge of Failure - Richard Cook - Talk at Velocity NY 2013

Accident
Boundary

Marginal
Boundary

?

Operating at the Edge of Failure

‘‘Going solid’’: a model of system dynamics and consequences for patient safety - R Cook, J Rasmussen
Resilience in complex adaptive systems: Operating at the Edge of Failure - Richard Cook - Talk at Velocity NY 2013

Operating at the Edge of Failure

Accident
Boundary

Marginal
Boundary

Embrace
Failure

Resilience
is by

Design

Photo courtesy of FEMA/Joselyne Augustino

“Autonomy makes information local,
leading to greater certainty and stability.”

- Mark Burgess

In Search of Certainty - Mark Burgess

Promise Theory

Think in

Promises
Not

Commands

Promise Theory

Promises converge towards
A definite outcome from
unpredictable beginnings
 ⇒ improved Stability

Commands diverge into
unpredictable outcomes from
definite beginnings
 ⇒ decreased Stability

Resilience in

Biological
Systems

Meerkats
Puppies! Now that I’ve got your attention, complexity theory - Nicolas Perony, TED talk

“In three words, in the animal kingdom,
simplicity leads to complexity  

which leads to resilience.”
- Nicolas Perony

Puppies! Now that I’ve got your attention, complexity theory - Nicolas Perony, TED talk

Resilience in

Social

Systems

Dealing in Security
Understanding vital services, and how they keep you safe

1 INDIVIDUAL (you)

6 ways to die

3 sets of essential services

7 layers of PROTECTION

Dealing in Security - Mike Bennet, Vinay Gupta

What we can learn from
Resilience in
Biological and
Social Systems

1. Feature Diversity and redundancy
2. Inter-Connected network structure
3. Wide distribution across all scales
4. Capacity to self-adapt & self-organize

Toward Resilient Architectures 1: Biology Lessons - Michael Mehaffy, Nikos A. Salingaros

Applying resilience thinking: Seven principles for building resilience in social-ecological systems - Reinette Biggs et. al.

Resilience in

Computer
Systems

We Need To

Manage

Failure
Not Try To Avoid It

Let It
Crash

Crash
Only
Software

Crash-Only Software - George Candea, Armando Fox

 Stop = Crash Safely
Start = Recover Fast

Recursive Restartability
Turning the Crash-Only Sledgehammer into a Scalpel

Recursive Restartability: Turning the Reboot Sledgehammer into a Scalpel - George Candea, Armando Fox

Traditional
State Management

Object

Critical state
that needs protection

Client

Thread boundary

Synchronous dispatch Thread boundary

?

Utterly broken

“Accidents come from relationships
not broken parts.”

- Sidney dekker

Drift into Failure - Sidney Dekker

Requirements for a
Sane Failure Model

1. Contained—Avoid cascading failures
2. Reified—as messages
3. Signalled—Asynchronously
4. Observed—by 1-N
5. Managed—Outside failed Context

Failures need to be

Bulkhead

Pattern

Enter Supervision

Out of the Tar Pit - Ben Moseley , Peter Marks

• Input Data
• Derived Data

Critical

We need a way out of the
State Tar Pit

Essential
State

Out of the Tar Pit - Ben Moseley , Peter Marks

Essential
Logic

Accidental
State and

Control

We need a way out of the
State Tar Pit

The

Vending
Machine
Pattern

Think Vending Machine

Coffee
Machine

Programmer

Inserts coins

Gets coffee

Add more coins

Think Vending Machine

Programmer

Service
Guy

Inserts coins

Gets coffee

Out of
coffee beans

failure

Adds
more
beans

Out of coffee beans error

WRONG
Coffee

Machine

Think Vending Machine

ServiceClient

Supervisor

Request

Response

Validation Error

Application
Failure

Manages
Failure

Error
Kernel
Pattern
Onion-layered state & Failure management

Making reliable distributed systems in the presence of software errors - Joe Armstrong
On Erlang, State and Crashes - Jesper Louis Andersen

Onion Layered
State Management

Error Kernel

Object

Critical state
that needs protection

Client

Supervision

Supervision

Thread boundary

Supervision

Demo
Time

Let’s model a resilient vending machine, in Akka

Demo Runner

object VendingMachineDemo extends App { 
 
 val system = ActorSystem("vendingMachineDemo") 
 val coffeeMachine = system.actorOf(Props[CoffeeMachineManager], "coffeeMachineManager") 
 val customer = Inbox.create(system) // emulates the customer 

 … // test runs
 
 system.shutdown()  
}

https://gist.github.com/jboner/d24c0eb91417a5ec10a6

Test Happy Path

// Insert 2 coins and get an Espresso  
customer.send(coffeeMachine, Coins(2)) 
customer.send(coffeeMachine, Selection(Espresso)) 
val Beverage(coffee1) = customer.receive(5.seconds) 
println(s"Got myself an $coffee1") 
assert(coffee1 == Espresso)

https://gist.github.com/jboner/d24c0eb91417a5ec10a6

Test User Error

customer.send(coffeeMachine, Coins(1)) 
customer.send(coffeeMachine, Selection(Latte)) 
val NotEnoughCoinsError(message) = customer.receive(5.seconds) 
println(s"Got myself a validation error: $message") 
assert(message == "Please insert [1] coins")

https://gist.github.com/jboner/d24c0eb91417a5ec10a6

Test System Failure

// Insert 1 coin (had 1 before) and try to get my Latte 
// Machine should:  
// 1. Fail  
// 2. Restart  
// 3. Resubmit my order  
// 4. Give me my coffee  
customer.send(coffeeMachine, Coins(1)) 
customer.send(coffeeMachine, TriggerOutOfCoffeeBeansFailure) 
customer.send(coffeeMachine, Selection(Latte)) 
val Beverage(coffee2) = customer.receive(5.seconds) 
println(s"Got myself a $coffee2")  
assert(coffee2 == Latte) 

https://gist.github.com/jboner/d24c0eb91417a5ec10a6

Protocol
// Coffee types 
trait CoffeeType 
case object BlackCoffee extends CoffeeType  
case object Latte extends CoffeeType  
case object Espresso extends CoffeeType  
 
// Commands 
case class Coins(number: Int)  
case class Selection(coffee: CoffeeType) 
case object TriggerOutOfCoffeeBeansFailure  
 
// Events 
case class CoinsReceived(number: Int)  
 
// Replies 
case class Beverage(coffee: CoffeeType)  
 
// Errors 
case class NotEnoughCoinsError(message: String) 
 
// Failures 
case class OutOfCoffeeBeansFailure(customer: ActorRef, 
 pendingOrder: Selection, 
 nrOfInsertedCoins: Int) extends Exception

https://gist.github.com/jboner/d24c0eb91417a5ec10a6

CoffeeMachine

class CoffeeMachine extends Actor { 
 val price = 2 
 var nrOfInsertedCoins = 0 
 var outOfCoffeeBeans = false  
 var totalNrOfCoins = 0 
 
 def receive = { … }  
 
 override def postRestart(failure: Throwable): Unit = { … }
}

https://gist.github.com/jboner/d24c0eb91417a5ec10a6

CoffeeMachine
 def receive = {  
 case Coins(nr) =>  
 nrOfInsertedCoins += nr  
 totalNrOfCoins += nr 
 println(s"Inserted [$nr] coins")  
 println(s"Total number of coins in machine is [$totalNrOfCoins]") 
 
 case selection @ Selection(coffeeType) => 
 if (nrOfInsertedCoins < price) 
 sender.tell(NotEnoughCoinsError(
 s”Insert [${price - nrOfInsertedCoins}] coins"), self) 
 else { 
 if (outOfCoffeeBeans) 
 throw new OutOfCoffeeBeansFailure(sender, selection, nrOfInsertedCoins) 
 println(s"Brewing your $coffeeType") 
 sender.tell(Beverage(coffeeType), self) 
 nrOfInsertedCoins = 0 
 } 
 
 case TriggerOutOfCoffeeBeansFailure => 
 outOfCoffeeBeans = true  
 }

https://gist.github.com/jboner/d24c0eb91417a5ec10a6

CoffeeMachine

override def postRestart(failure: Throwable): Unit = {  
 println(s"Restarting coffee machine...") 
 failure match { 
 case OutOfCoffeeBeansFailure(customer, pendingOrder, coins) =>  
 nrOfInsertedCoins = coins  
 outOfCoffeeBeans = false  
 println(s"Resubmitting pending order $pendingOrder")  
 context.self.tell(pendingOrder, customer) 
 } 
}

https://gist.github.com/jboner/d24c0eb91417a5ec10a6

Supervisor

class CoffeeMachineManager extends Actor { 
 override val supervisorStrategy = 
 OneForOneStrategy(maxNrOfRetries = 10, withinTimeRange = 1.minute) { 
 case e: OutOfCoffeeBeansFailure => 
 println(s"ServiceGuy notified: $e") 
 Restart  
 case _: Exception => 
 Escalate  
 } 
 
 // to simplify things he is only managing 1 single machine 
 val machine = context.actorOf(
 Props[CoffeeMachine], name = "coffeeMachine") 
 
 def receive = {  
 case request => machine.forward(request) 
 } 
}

https://gist.github.com/jboner/d24c0eb91417a5ec10a6

So.........
Sorry...but Not really.

Are We Done?

We can not
keep putting
all eggs in the
same basket

We need to
Maintain Diversity
and Redundancy

The Network
is Reliable

NOT
Really

Here, We are living in the

Looming
Shadow of

Impossibility
Theorems

CAP: Consistency is impossible
FLP: Consensus is impossible

Towards Resilient Distributed Systems

Isolation
• Autonomous Microservices
• Resilient Protocols
• Virtualization

Data Resilience
• Eventual & Causal Consistency
• Event Logging
• Flow Control / Feedback Control

Self-healing
• Decentralized Architectures
• Gossip Protocols
• Failure Detection

Embrace the Network
•Asynchronicity
•Location Transparency

Microservices

1. Autonomy
2. Isolation
3. Mobility
4. Single Responsibility
5. Exclusive StatE

An autonomous Service
can only promise
its own behavior

Apply Promise Theory

We need to decompose the system using

Consistency Boundaries

Inside Data
Our current present—state
Outside Data

Blast from the past—facts
Between Services

Hope for the future—commands

Data on the inside vs Data on the outside - Pat Helland

WITHIN the Consistency Boundary
we can have STRONG CONSISTENCY

BETWEEN
Consistency
Boundaries

it is a

ZOO

We need Systems that are Decoupled in

Time and Space

Embrace the Network

• Go Asynchronous
• Make distribution first class
• Learn from the mistakes of RPC, EJB & CORBA
• Leverage Location Transparency
• Actor Model does it right

Location Transparency

One communication abstraction
across all dimensions of scale

Core ⇒ Socket ⇒ CPU ⇒

Container ⇒ Server ⇒ Rack ⇒

Data Center ⇒ GLobal

Resilient Protocols

 are tolerant to
• Message loss
• Message reordering
• Message duplication

 Embrace ACID 2.0
• Associative
• Commutative
• Idempotent
• Distributed

Depend on
• Asynchronous Communication
• Eventual Consistency

“To make a system of interconnected components
crash-only, it must be designed so that components

can tolerate the crashes and temporary unavailability
of their peers. This means we require: [1] strong

modularity with relatively impermeable component
boundaries, [2] timeout-based communication and

lease-based resource allocation, and [3] self-
describing requests that carry a time-to-live and

information on whether they are idempotent.”
- George Candea, Armando Fox

Crash-Only Software - George Candea, Armando Fox

"Software components should be designed such
that they can deny service for any request or call.

Then, if an underlying component can say No,
apps must be designed to take No for an answer

and decide how to proceed: give up, wait and
retry, reduce fidelity, etc.”

- George Candea, Armando Fox

Recursive Restartability: Turning the Reboot Sledgehammer into a Scalpel - George Candea, Armando Fox

Services need to learn to accept

NO for an answer

Member
Node

Member
Node

Member
Node

Member
Node

Member
Node

Member
Node

Member
Node

Member
Node

Member
Node

Member
Node

Decentralized
Epidemic Gossip Protocols

Gossip Of membership, Data & Meta DataFailure detection heartbeat

STRONG
Consistency
Is the wrong default

“Two-phase commit is the
anti-availability protocol.”

- Pat Helland

Standing on Distributed Shoulders of Giants - Pat Helland

Eventual
Consistency

We have to rely on

But relax, it’s how the world works

Transactions
But I really need

“In general, application developers
simply do not implement large
scalable applications assuming

distributed transactions.”
- Pat Helland

Life Beyond Distributed Transactions - Pat Helland

Guess.
Apologize.

Compensate.

Use a protocol of

“The truth is the log. The database is a
cache of a subset of the log.”

- Pat Helland

Immutability Changes Everything - Pat Helland

CRUD is DEAD

Event Logging

• Work with Facts—immutable values
• Event Sourcing
• DB of Facts—Keep all history
• Just replay on failure
• Free Auditing, Debugging, Replication
• Single Writer PRinciple
• Avoids OO-Relational impedence mismatch
• CQRS—Separate the Read & Write Model

Let’s model a resilient & Event Logged vending machine, in Akka

Demo
Time

Event Logged CoffeeMachine

// Events 
case class CoinsReceived(number: Int) 

class CoffeeMachine extends PersistentActor { 
 val price = 2 
 var nrOfInsertedCoins = 0 
 var outOfCoffeeBeans = false 
 var totalNrOfCoins = 0 
 
 override def persistenceId = "CoffeeMachine" 
 
 override def receiveCommand: Receive = { 
 case Coins(nr) => 
 nrOfInsertedCoins += nr 
 println(s"Inserted [$nr] coins") 
 persist(CoinsReceived(nr)) { evt => 
 totalNrOfCoins += nr 
 println(s"Total number of coins in machine is [$totalNrOfCoins]") 
 }
 …

 }

 override def receiveRecover: Receive = { 
 case CoinsReceived(coins) => 
 totalNrOfCoins += coins 
 println(s"Total number of coins in machine is [$totalNrOfCoins]") 
 } 
}

https://gist.github.com/jboner/1db37eeee3ed3c9422e4

“An escalator can never break: it can only
become stairs. You should never see an

Escalator Temporarily Out Of Order sign, just
Escalator Temporarily Stairs. Sorry for the

convenience.”
- Mitch Hedberg

Graceful
Degradation

Circuit Breaker

Little’s Law

L = λW

Queue Length = Arrival Rate * Response Time

W = L/λ

Response Time = Queue Length / Arrival Rate

W: Response Time

L: Queue Length

Flow Control

Always Apply BackPressure

Feedback
Control

“Continuously compare the actual
output to its desired reference value;

then apply a change to the system
inputs that counteracts any deviation of
the actual output from the reference.”

- Philipp K. Janert

Feedback Control for Computer Systems - Philipp K. Janet

The Feedback Principle

Feedback Control

Influencing a
Complex System

Places to Intervene
in a Complex System

1. The constants, parameters or numbers
2. The sizes of buffers relative to their flows
3. The structure of material stocks and flows
4. The lengths of delays, relative to the rate of system change
5. The strength of negative feedback loops
6. The gain around driving positive feedback loops
7. The structure of information flows
8. The rules of the system
9. The power to add, change, evolve, or self-organize structure
10. The goals of the system
11. The mindset or paradigm out of which the system arises
12. The power to transcend paradigms

Leverage Points: Places to Intervene in a System - Donella Meadows:

Triple Loop Learning
 Loop 1: Follow the rules
 Loop 2: Change the rules
 Loop 3: Learn how to learn

Triple Loop Learning - Chris Argyris

Testing

What can we learn from Arnold?

Blow things up

Shoot
Your App

Down

Pull the Plug
…and see what happens

Executive
Summary

“Complex systems run as broken systems.”
- richard Cook

How Complex Systems Fail - Richard Cook

Resilience
is by

Design

Photo courtesy of FEMA/Joselyne Augustino

Without Resilience
Nothing Else Matters

References
Drift into Failure - http://www.amazon.com/Drift-into-Failure-Components-Understanding-ebook/dp/B009KOKXKY

How Complex Systems Fail - http://web.mit.edu/2.75/resources/random/How%20Complex%20Systems%20Fail.pdf

Leverage Points: Places to Intervene in a System - http://www.donellameadows.org/archives/leverage-points-places-to-intervene-in-a-system/
Going Solid: A Model of System Dynamics and Consequences for Patient Safety - http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1743994/

Resilience in Complex Adaptive Systems: Operating at the Edge of Failure - https://www.youtube.com/watch?v=PGLYEDpNu60

Puppies! Now that I’ve got your attention, Complexity Theory - https://www.ted.com/talks/
nicolas_perony_puppies_now_that_i_ve_got_your_attention_complexity_theory

How Bacteria Becomes Resistant - http://www.abc.net.au/science/slab/antibiotics/resistance.htm

Towards Resilient Architectures: Biology Lessons - http://www.metropolismag.com/Point-of-View/March-2013/Toward-Resilient-Architectures-1-Biology-Lessons/

Dealing in Security - http://resiliencemaps.org/files/Dealing_in_Security.July2010.en.pdf

What is resilience? An introduction to social-ecological research - http://www.stockholmresilience.org/download/18.10119fc11455d3c557d6d21/1398172490555/
SU_SRC_whatisresilience_sidaApril2014.pdf
Applying resilience thinking: Seven principles for building resilience in social-ecological systems - http://www.stockholmresilience.org/download/
18.10119fc11455d3c557d6928/1398150799790/SRC+Applying+Resilience+final.pdf

Crash-Only Software - https://www.usenix.org/legacy/events/hotos03/tech/full_papers/candea/candea.pdf

Recursive Restartability: Turning the Reboot Sledgehammer into a Scalpel - http://roc.cs.berkeley.edu/papers/recursive_restartability.pdf

Out of the Tar Pit - http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.8928

Bulkhead Pattern - http://skife.org/architecture/fault-tolerance/2009/12/31/bulkheads.html

Making Reliable Distributed Systems in the Presence of Software Errors - http://www.erlang.org/download/armstrong_thesis_2003.pdf

On Erlang, State and Crashes - http://jlouisramblings.blogspot.be/2010/11/on-erlang-state-and-crashes.html

Akka Supervision - http://doc.akka.io/docs/akka/snapshot/general/supervision.html

Release It!: Design and Deploy Production-Ready Software - https://pragprog.com/book/mnee/release-it

Feedback Control for Computer Systems - http://www.amazon.com/Feedback-Control-Computer-Systems-Philipp/dp/1449361692

The Network in Reliable - http://queue.acm.org/detail.cfm?id=2655736

Data on the Outside vs Data on the Inside - https://msdn.microsoft.com/en-us/library/ms954587.aspx

Life Beyond Distributed Transactions - http://adrianmarriott.net/logosroot/papers/LifeBeyondTxns.pdf

Immutability Changes Everything - http://cidrdb.org/cidr2015/Papers/CIDR15_Paper16.pdf

Standing on Distributed Shoulders of Giants - https://queue.acm.org/detail.cfm?id=2953944

Thinking in Promises - http://shop.oreilly.com/product/0636920036289.do

In Search Of Certainty - http://shop.oreilly.com/product/0636920038542.do

Reactive Microservices Architecture - http://www.oreilly.com/programming/free/reactive-microservices-architecture-orm.csp
Reactive Streams - http://reactive-streams.org

Vending Machine Akka Supervision Demo - https://gist.github.com/jboner/d24c0eb91417a5ec10a6

Persistent Vending Machine Akka Supervision Demo - https://gist.github.com/jboner/1db37eeee3ed3c9422e4

http://www.amazon.com/Drift-into-Failure-Components-Understanding-ebook/dp/B009KOKXKY
http://web.mit.edu/2.75/resources/random/How%20Complex%20Systems%20Fail.pdf
http://www.donellameadows.org/archives/leverage-points-places-to-intervene-in-a-system/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1743994/
https://www.youtube.com/watch?v=PGLYEDpNu60
https://www.ted.com/talks/nicolas_perony_puppies_now_that_i_ve_got_your_attention_complexity_theory
https://www.ted.com/talks/nicolas_perony_puppies_now_that_i_ve_got_your_attention_complexity_theory
https://www.ted.com/talks/nicolas_perony_puppies_now_that_i_ve_got_your_attention_complexity_theory
http://www.abc.net.au/science/slab/antibiotics/resistance.htm
http://www.metropolismag.com/Point-of-View/March-2013/Toward-Resilient-Architectures-1-Biology-Lessons/
http://resiliencemaps.org/files/Dealing_in_Security.July2010.en.pdf
http://www.stockholmresilience.org/download/18.10119fc11455d3c557d6d21/1398172490555/SU_SRC_whatisresilience_sidaApril2014.pdf
http://www.stockholmresilience.org/download/18.10119fc11455d3c557d6d21/1398172490555/SU_SRC_whatisresilience_sidaApril2014.pdf
http://www.stockholmresilience.org/download/18.10119fc11455d3c557d6928/1398150799790/SRC+Applying+Resilience+final.pdf
http://www.stockholmresilience.org/download/18.10119fc11455d3c557d6928/1398150799790/SRC+Applying+Resilience+final.pdf
https://www.usenix.org/legacy/events/hotos03/tech/full_papers/candea/candea.pdf
http://roc.cs.berkeley.edu/papers/recursive_restartability.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.8928
http://skife.org/architecture/fault-tolerance/2009/12/31/bulkheads.html
http://www.erlang.org/download/armstrong_thesis_2003.pdf
http://jlouisramblings.blogspot.be/2010/11/on-erlang-state-and-crashes.html
http://doc.akka.io/docs/akka/snapshot/general/supervision.html
https://pragprog.com/book/mnee/release-it
http://www.amazon.com/Feedback-Control-Computer-Systems-Philipp/dp/1449361692
http://queue.acm.org/detail.cfm?id=2655736
https://msdn.microsoft.com/en-us/library/ms954587.aspx
http://adrianmarriott.net/logosroot/papers/LifeBeyondTxns.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper16.pdf
https://queue.acm.org/detail.cfm?id=2953944
http://shop.oreilly.com/product/0636920036289.do
http://shop.oreilly.com/product/0636920038542.do
http://www.oreilly.com/programming/free/reactive-microservices-architecture-orm.csp
http://reactive-streams.org
https://gist.github.com/jboner/d24c0eb91417a5ec10a6
https://gist.github.com/jboner/1db37eeee3ed3c9422e4

Thank

You

Without Resilience
Nothing Else Matters

Jonas Bonér
CTO Lightbend

@jboner

