Building Single Page
Web Applications

with Purescript and Erlang

by @doppioslash

09/06/2017 - EUC2017 - Stockholm

Hl, I'm
Claudia Doppioslash

Functional & Game
Programmer Developer
@doppioslash

www.lambdacat.com

oiee. pvs. PEER STRITZINGER 6men

http://www.twitter.com/doppioslash
http://www.lambdacat.com

o pivs. PEER STRITZINGER cwmen

Peer Stritzinger GmbH

Functio
Progra
Industria

nal and Fallure Tolerant
mming for Embedded,

Control and Automotive

piee. pivs. PEER STRITZINGER 6mes

www.stritzinger.com

http://www.stritzinger.com

TR T T X S TX XY SR T L |

GPIO1 UART | sp12

-TL- s s o s e s o el - e
: Mode € - v : etedf =

' - 123455 b

4 PRITEY L A

e,

{3eeF

bJ4

=3
A]%

‘(/w =

9 (
|

%EET ’"'"!=i82= I

y

954} / g S =
mm== Atmel
== ATSAMV/1021
- _ AB-ES4
E Dish | ARM :

o e) '
o B 2 e
ofmiy =ac . I ‘ .l...
Wt 5o e s Iy Rl R > [YELEITT
il

SRRRRREEEN
HL

\ 2
LU LR TR

Syt
4 u“)

T
(;____f;/—*'

g -

w GRISP.
GRISP Uer,: 1.0
16-122-0354-01

nnnnnnnnnnnn

Why are you here?

‘I need to get some frontend code done,
and | hate Javascript”

Interested in Haskell-like languages

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

What are you getting

- choices of FP languages that target Javascript

- Introduction to Purescript

- overview of framework choices

- thoughts from porting our project from Elm to Purescript

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Our Project
Visual IDE for PLC language IEC61499

“A programmable logic controller, PLC, or programmable
controller is a digital computer used for automation®

Event —»] - ----
Input ——p , ECC |
ol e
R |
— el et
Data , :
Input . Control |
1 Algorithms
—> 0T

(images from http://www.controldesign.com/articles/2007/202/?show=all)

o pivs. PEER STRITZINGER cwmen

http://www.controldesign.com/articles/2007/202/?show=all

Our Project

Inspired by Bret Victor's “Inventing on Principle” talk
How visualising debugging helps

f

_JL__)

ﬂhvvv%iju

||/}

-]
aar

f
e
| B B

Our Project

ATCnet | ampel_app Rexroth

Bosch Group

« ‘ -60 ‘ -50 -40 -30 l -20 ‘ ‘10 s/ »

i n_Oy n v
al.red B3 [1.0¢ inn stan 00 sot_on done set_on done
0.8 : sop sot_on sot_ol
— nbakze sot sot
0.6¢ o_dolay
0.4 : M mio_out mio_out
1| chan 2| chan
0.2
e 0va va
J 0
0.2
g! son1 r2 y2
sot_on gorne 21 up sot_on done set_on done
set_olf down sol_oM set_oll
sut sot S0t
mo_n
mio_out 1 chan val | 1 mo_out mo_out
3| chan 50 | nerva 1 | chan 2| chan
A
0| val 0 | debounce 1|va 0| val
g2 son2 al diy1
sot_on dorne nt up go aut stan! 00
sot_ol down sot_ywod set Siop
set next other .
mo_n . o 9 ay
mio_out 1 chan val | 1 ampel 1000 | o0
3| chan 50 | imderva 1000 | t_yollow celay | 1000
0lwval 0 | debounce 3000 | t_green rod | O
' ' 1| yieid yollow | 1
« green J¥

-60

-50 |-40 |-30 ’-20 ’-10 s|”

orepuvs. PEER STRITZINGER owex

Demo

orepuvs. PEER STRITZINGER owex

Deployment

PLC Language _
Debug with IDE

Compiler

|

BEAM files >

BEAM running

on bare metal

o,
S
S
="

orepuvs. PEER STRITZINGER owex

Structure

PLC IDE

BROWSER
web sockets

PLC BOARD

PLC Program

X,
oy
S
=

o pivs. PEER STRITZINGER cwmen

PPPPPPPPP

PEER STRITZINGER 6mex

Requirements

Many platforms to support
All PC OSs & iPad Pro

Decent performance

Needs to be interactive
~30fps should be fine

Frontend Tech Choice

Web Technologies because cross-platform

Hence: Javascript, CSS, Svg

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Wait a minute, Javascript?

...1et’s not.

Some Possible Choices, Now

Ready now:
Bucklescript Purescript ¢=?
Clojurescript 9 Elm }

CoffeScript Ngg ~ 1YPesCript

Reason E Fable <

...and more...

They re breedlng I|ke rabbits!

o pivs. PEER STRITZINGER cwmen

S0 many choices...

o pivs. PEER STRITZINGER cwmen

YOU MUST CHOOSE...

&

BUI; BHOIISE WISE[Y y

(...or you'll have to port this program again...)

DIPL. PHYS. PEER STR'TZ' N G ER GMBH

Our First Choice

} : “Please adopt me...”

“...I swear | won’t mention Monads”

DIPL. PHYS. PEER STR'TZ' N G ER GMBH

Elm

s known for:

- very helpful type errors
- opinionated
- a pure and typed language, but simple

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

The EIm tradeoff

Preferring simpler types
(unlike e.g. Haskell) begets:

smooth learning curve
very helpful error messages

but also

more boilerplate
components”

abandoned Functional Reactive Programming

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Our Second Choice

Purescript ¢=? : “Look into the Type Vortex...”

“...to gain Type superpowers (and possibly burn)”

o pivs. PEER STRITZINGER cwmen

PPPPPPPPP

What is Purescript?

Eagerly ev

Pure Functional
Strongly Typed

aluated

Compiles to Javascript

Advanced Types (Typeclasses, HKT)

Haskell-like syntax (wi

No runt

h all the squiggles)
ime

Generates reada
Open community, a

PEER STRITZINGER 6mex

ole Javascript
bit of a roadmap

Purescript Pros vs JS

If it compiles, it works (90% of the time)
Confident refactoring (work in small steps)
Clean

Much fewer LOC

It has error messages
(certainly better than undefined is not a function)

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Pros compared to EIm

Pursuit (search libs by type signature)
Clearer direction

Can work a lot with REPL
Great workflow, (e.g. Type holes)

Many of the higher abstractions

Ccons

Takes time to learn the higher abstractions

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Pursuit

Pursut

Search results

censor :: forall wm a. MonadWriter wm => (w -=> w) =>ma ->m a

Modify the final accumulator value by applying a function.

() purescript-transformers () Control.Monad.Writer.Class

N -

IFtAT

1iftA1 :: forall f a b. Applicative f => (a -> b) -> fa ->fb

DIPL. PHYS. PEER STR'TZ' N G ER GMBH

Elm Search (unofficial)

)

Elm Search

(a->b ->b) ->b ->List a ->b

Showing results for: (a->b->b)->b->Lista->b

foldl ¢ (a ->b ->b) ->b ->List a -> b

Reduce a list from the left.

List

DIPL. PHYS. PEER STR'TZ' N G ER GMBH

Pros compared to EIm

Pursuit (search libs by type signature)
Clearer direction

Can work a lot with REPL
Great workflow, (e.g. Type holes)

Many of the higher abstractions

Ccons

Takes time to learn the higher abstractions

Type errors are not as good as Elm

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Milestones

[purescript / purescript @Unwatch~ 153 drUnstar 3608 ¥ Fork 301

Code @ Issues 144 '] Pull requests 14 I'l Projects 1 Wiki Insights ~

1.0 PR—

No due date 85% complete

Improving error messages, mark DCE as experimental, imperative core improvements, purs bundle
performance.

® 20 Open v 118 Closed

(@ [purs ide] Add a "do-nothing’ response to the addimport command [=)
#2926 opened 2 days ago by kRITZCREEK

(O Generic.Rep doesn't derive inner records [£ asiad 31
#2911 opened 11 days ago by pkamenarsky

(@ Rename classes in Prim breaking [0
#2903 opened 15 days ago by paf31

= o Dixosososmtor hesaldas ankansss s [Fsyrm—ree— e

o pivs. PEER STRITZINGER cwmen

Pros compared to EIm

Pursuit (search libs by type signature)
Clearer direction

Can work a lot with REPL
Great workflow, (e.g. Type holes)

Many of the higher abstractions

Ccons

Takes time to learn the higher abstractions

Type errors are not as helpful as EIm

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Pros compared to EIm

Pursuit (search libs by type signature)
Clearer direction

Can work a lot with REPL
Great workflow, (e.g. Type holes)

Many of the higher abstractions

Ccons

Takes time to learn the higher abstractions

Type errors are not as helpful as EIm

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Type holes and Search

View Mode Backend Share Compile ® Show JS

1 module Main where .

2 Hole 'help' has the inferred type

3 import Prelude

4 1import Control.Monad.Eff.Console (log) Array (Int -> String) -> Int -> String

5 1import Data.Array ((..))

6 }mport Data'Traversable (traverse) You could substitute the hole with one of these v:

7 1import TryPureScript

8

9 fizzBuzz :: Int -> String Data.Foldable.fold t: forall £ m. Fold:

190 fizzBuzz = Data.Monoid.mempty :: forall m. Monoid
R ’help [part "fizz" 3 Unsafe.Coerce.unsafeCoerce :: forall a b. a ->

12 , part "buzz" 5

13] . .

in the following context:

14 where

15 part smn | n mod m==0 =5

16 | otherwise = "" part :: String -> Int -> Int -> String

17

18 main = render =<< withConsole do
19 traverse (log <<< fizzBuzz) (1 .. 100)

n value declaration fizzBuzz

DIPL. PHYS. PEER STR'TZ' N G ER GMBH

Type holes and Search

View Mode Backend Share Compile ® Show JS

1 module Main where .

2 Hole 'help' has the inferred type

3 import Prelude

4 1import Control.Monad.Eff.Console (log) Array (Int -> String) -> Int -> String

S5 1import Data.Array ((..))

6 }mport Data'Traversable (traverse) You could substitute the hole with one of these v:

7 1import TryPureScript

8

9 fizzBuzz :: Int -> String Data.Foldable.fold t: forall £ m. Fold:

190 fizzBuzz = Data.Monoid.mempty :: forall m. Monoid
- ?help_ [part "fizz" 3 Unsafe.Coerce.unsafeCoerce :: forall a b. a ->

12 , part "buzz" 5
13 Type Hole 5

in the following context:

14 where

15 part smn | n mod m==0 =5

16 | otherwise = "" part :: String -> Int -> Int -> String
17

18 main = render =<< withConsole do
19 traverse (log <<< fizzBuzz) (1 .. 100)

n value declaration fizzBuzz

DIPL. PHYS. PEER STR'TZ' N G ER GMBH

Type holes and Search

® ShowdJS

View Mode Backend Share Compile

o o
w m*lle;uoc» NOOWUVTIA WN

14
15
16
17
18
19

module Main where

import Prelude

import Control.Monad.Eff.Console (log)
import Data.Array ((..))

import Data.Traversable (traverse)
import TryPureScript

fizzBuzz :: Int -> String
fizzBuzz =

, part "buzz" 5
]
where
part smn | n mod m==0 =5
| otherwise = ""

main = render =<< withConsole do
traverse (log <<< fizzBuzz) (1 .. 100)

o pivs. PEER STRITZINGER cwmen

Hole 'help' has the inferred type

Array (Int -> String) -> Int

-> String

You could substitute the hole with one of these v:

Data.Foldable.fold
Data.Monoid.mempty
Unsafe.Coerce.unsafeCoerce

in the following context:

part :: String -> Int -> Int

n value declaration fizzBuzz

forall £ m. Fold:

forall m. Monoid

-

forall a b. a ->

-> String

Type holes and Search

View Mode Backend Share Compile ® Show JS

module Main where

Hole 'help' has the inferred type

import Prelude
import Control.Monad.Eff.Console (log) Array (Int -> String) -> Int -> String
import Data.Array ((..))

import Data.Traversable (traverse)
import TryPureScript

You could substitute the hole with one of these v:

=
IS&QOO\IOWW#WNI—‘

fizzBuzz :: Int -> String Data.Foldable.fold :: forall £ m. Fold:
fizzBuzz = Data.Monoid.mempty :: forall m. Monoid
Zhglp [part "fizz" 3 Unsafe.Coerce.unsafeCoerce :: forall a b. a ->
12 , part "buzz" 5 > d = =
e unction
13] in the followu%%or? text: ctions
14 where
15 part smn | n mod m==0 =5
16 | otherwise = "" part :: String -> Int -> Int -> String
17

18 main = render =<< withConsole do
19 traverse (log <<< fizzBuzz) (1 .. 100)

n value declaration fizzBuzz

o pivs. PEER STRITZINGER cwmen

Pros compared to EIm

Pursuit (search libs by type signature)
Clearer direction

Can work a lot with REPL
Great workflow, (e.g. Type holes)

Many of the higher abstractions

Ccons

Takes time to learn the higher abstractions

Type errors are not as helpful as EIm

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Pros compared to EIm

Pursuit (search libs by type signature)
Clearer direction

Can work a lot with REPL
Great workflow, (e.g. Type holes)

Many of the higher abstractions

Ccons

Takes time to learn the higher abstractions

Type errors are not as helpful as EIm

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Pros compared to EIm

Pursuit (search libs by type signature)
Clearer direction

Can work a lot with REPL
Great workflow, (e.g. Type holes)

Many of the higher abstractions

Ccons

Takes time to learn the higher abstractions

Type errors are not as helpful as EIm

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Too hard?

“A monad is just a monoid in
the category of endofunctors”

memegenerator.net

DIPL. PHYS. PEER STR'TZ' N G ER GMBH

Too hard?

Detinitely you don't have to know everything to start

Coming from a language like Elm you only need to
learn how to use a few Monads (use, not write),
and get familiar with Typeclasses to start getting
poroductive in Purescript

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Keeping up with the Haskell
type treadmill

Researchers are inventing and discovering new
ideas all the time, you'll never learn them all.

Just go at your own pace

The higher abstractions will still be there tomorrow

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Why Purescript after EIm?

Why Purescript after EIm?

Exhibit 1: the type system is a great feature of EIm

YO DAWG, | HEARD YOU LIKE TYPES

$0 1 PUT MORE TYPES INTO YOUR TYPES

imgfiip.com 3

Purescript's has more features. (Simplicity vs Power)

o pivs. PEER STRITZINGER cwmen

Why Purescript after EIm?

- once you get restless with Elm’s boilerplate, you're
ikely ready for more powerful abstractions

- It's similar enough that porting code is relatively
straightforward

- It's possible to implement Elm in it, but not the other
way around (general purpose)

- It benefits from the hindsight of following Haskell from
a time distance

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Why Purescript after EIm?

- once you get restless with Elm’s boilerplate, you're
ikely ready for more powerful abstractions

- It's similar enough that porting code is relatively
straightforward

- It's possible to implement Elm in it, but not the other
way around (general purpose)

- It benefits from the hindsight of following Haskell from
a time distance

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

<_

purescript-elm

C @& GitHub, Inc. [US] https://github.com/rgrempel/purescript-elm Q vl v

purescript-elm

Having done some EIm programming, | wanted to give Purescript a try. | thought | would port one of my Elm apps to
Purescript, but quickly realized that there were a variety of little differences between the Elm core libraries and their
Purescript equivalents. One possible approach would have been to modify my app. However, it seemed to me that it
might be more interesting to port the Elm libraries to Purescript -- at least as a first step. | could then change the app to
use more idiomatic Purescript at my leisure.

Having started down that rabbit hole, | became fascinated by how Purescript does things -- and also fascinated by some
of the inner workings of EIm. One of the things |'ve tried to do is rewrite as much as possible of the Javascript used by
Elm in plain-old-Purescript. This has been more time-consuming than just wrapping the Javascript, but it has been a nice
way to teach myself idiomatic Purescript techniques.

| have now broken out some of the core EIm modules into a purescript-elm-compat library, which deals with "basic" core
modules, such as, well, Basics ,and Array, Bitwise, Char, Date, Debug, Dict, Json.Encode, Json.Decode ,
List , Maybe , Random, Regex , Result, Set, String,and Trampoline . So, you might find those useful already.

The main things remaining to do are:

o pivs. PEER STRITZINGER cwmen

Why Purescript after EIm?

- once you get restless with Elm’s boilerplate, you're
ikely ready for more powerful abstractions

- It's similar enough that porting code is relatively
straightforward

- It's possible to implement Elm in it, but not the other
way around (general purpose)

- It benefits from the hindsight of following Haskell from
a time distance

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Why Purescript after EIm?

- once you get restless with Elm’s boilerplate, you're
ikely ready for more powerful abstractions

- It's similar enough that porting code is relatively
straightforward

- It's possible to implement Elm in it, but not the other
way around (general purpose)

- It benefits from the hindsight of following Haskell from
a time distance

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Philosophy Differences

} Elm gives you only one possible program
structure (EIm arch)

(= In Purescript there are many possible
ways of structuring your app

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Philosophy Differences

} Elm is made to be simple above anything
else, have a quick learning curve

— In Purescript you have most of the type
= features you have in Haskell, longer learning
curve

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

PPPPPPPPP

Reflection on
Elm - Purescript - Haskell

)

Simplest

Focused on UX

One way to do things -
Removes all historical -
baggage

Great entry level
language

only targets web
browsers

PEER STRITZINGER 6mex

<= DS
Sensible - Research language
UX is fairly good - Most powerful
Still a lot of power - Least good UX
Eagerly - Most historical
evaluated, hence baggage
simpler - Laziness adds
general purpose complexity
many backends - Compiles to native

(C++, Erlang, Js) code, llvm, C, etc

Frameworks Overview

Wrapping React Pure ¢=?
- Pux - Halogen
- Thermite - Flare

- purescript-react - Optic Ul

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Frameworks

Type Complexity continuum

Here be Here be
Easy lenses free monads

Flare Pux Thermite Halogen
Optic Ul

o pivs. PEER STRITZINGER cwmen

Why Flare?

- (Great to start with
Easy to make cool interactive-graphs

Leaves ' G
Shadow

- Limited to a specific use case

Need to understand applicative functor syntax:
thing <$> thing <x> thing

DIPL. PHYS. PEER STR'TZ' N G ER GMBH

Why Flare?

Leaves . W
Shadow

plot :: Int -> Boolean -> Number -> Drawing
plot n s time = shadow (style s) $
filled (fillColor (hsl 220.0 0.6 0.5)) $
path (map point angles)

where point phi = { x: 50.0 + radius phi * cos phi
, ¥: 50.0 + radius phi * sin phi }
angles = map (\i -> 2.0 * pi / toNumber points * toNumber i) (0 .. points)
points = 200
radius phi = 48.0 * abs (cos (0.5 * toNumber n * (phi + phi0)))
phi0 = 0.001 * time
style false = mempty
style true = shadowColor black <> shadowOffset 2.0 2.0 <> shadowBlur 2.0

ui4d = 1lift3 plot (intSlider "Leaves" 2 10 6)
(boolean "Shadow" false)
(lift animationFrame)

DIPL. PHYS. PEER STR'TZ' N G ER GMBH

Why Pux?

Very similar to the ElIm architecture (0.16)
Svg support already included

Interactive React debugger can be wired in
Probably the simplest Purescript framework

Why not?

React dependencies /0\

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

On the pain of installing React

(Though the React interactive debugger is nice)

o pivs. PEER STRITZINGER cwmen

But!

Now It can use PReact instead of React

Pux Structure

State Action upglate AL
View Aft

Compare with the ElIm Architecture (0.16)

update INpuUts
view Effects

S,
=
S
<

o pivs. PEER STRITZINGER cwmen

Counter Code

data Action = Increment | Decrement m
@ type State = Int

update :: Action -> State -> State

update Increment state = state + 1 update

update Decrement state = state - 1

: view :: State -> Html Action
vView view state =
div []
[button [onClick (const Increment)]
[text "Increment"]

, span [] [text (show state)]
, button [onClick (const Decrement)]

| text "Decrement'" |

]

o pivs. PEER STRITZINGER cwmen

Thermite Optic Ul

Wraps React Pure Purescript

Lenses and stuff _enses and stuff

Written by Phil Freeman,
Purescript's author

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Why Halogen?

Doesn’'t depend on React

It's used in production by Slamdata, on a pretty
iImpressive app

> 1 people developing it
Nice Html DSL

v1.0.0 has arrived!
Why not?
Argh, the types!! My eyes burn!

aka It's just a bit hard

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Slamdata

LI slamdata / slamdata @Watch~ 34 sUnstar 278 Y Fork 65

Code Issues 173 Pull requests 9 Projects 0 Wiki Insights ~

Contributors Commits Code frequency Punch card Network Members Dependents

Feb 8, 201 5 _ Jun 6, 201 7 Contributions: Commits v

Contributions to master, excluding merge commits

80
60

40

20

April July October 2016 April July October 2017 April

o pivs. PEER STRITZINGER cwmen

Why Halogen?

Doesn’'t depend on React

It's used in production by Slamdata, on a pretty
iImpressive app

> 1 people developing it
Nice Html DSL

v1.0.0 has arrived!
Why not?
Argh, the types!! My eyes burn!

aka It's just a bit hard

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Halogen Structure

Component eval main
HalogenEffects

Compare with Pux

Query

action
request

State | Action : : update Inputs
_) vView JAVI

S,
=X
S
Y
@

o pivs. PEER STRITZINGER cwmen

Halogen Structure

—— | The state of the component
type State = Boolean

Query

— | The query algebra for the component
data Query a

= ToggleState a

| IsOn (Boolean -> a)

action
request

data Message = Toggled Boolean

type Input = Unit

—— | The component definition
Component myButton :: forall m. H.Component HH.HTML Query Input Messa
myButton =
H.component
{ 1nitialState: const initialState
, render
, eval
, receiliver: const Nothing

o pivs. PEER STRITZINGER cwmen where

Halogen Structure

initialState :: State
initialState = false
render :: State —-> H.ComponentHTML Query
render state =
let
label = 1f state then "On" else "Off"
in
HH.button

[HP.title label
, HE.onClick (HE.input Toggle)

]
[HH.text label]

oiee. pvs. PEER STRITZINGER 6men

Halogen Structure

eval :: Query ~>
H.ComponentDSL State Query Message m
eval = case of

Toggle next -> do
state <- H.get
let nextState = not state
H.put nextState
H.raise $ Toggled nextState
pure next
IsOn reply -> do
state <- H.get
pure (reply state)

oiee. pvs. PEER STRITZINGER 6men

Porting choices

1. Which tools?

2. Which framework?

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Which tools?

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

PPPPPPPPP

Package Management

At the moment Purescript is relying on bower, which
makes the time after a new release particularly annoying

But Purescript's community is working on a new
package manager: psc-package

And there is also purify, which wants to be like
Haskell's stack (reproducible builds)

PEER STRITZINGER 6mex

Bower:

The day after a new release
AP

o pivs. PEER STRITZINGER cwmen

Bower:
The day after a new release

Bower has no clue about Purescript
Bower always gets the latest version of a library

Until all libraries are updated to latest, chaos

Solution: manually tell bower the version you want

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

PPPPPPPPP

Package Management

At the moment Purescript is relying on bower, which
makes the time after a new release particularly annoying

But Purescript's community is working on a new
package manager: psc-package

And there is also purify, which wants to be like
Haskell's stack (reproducible builds)

PEER STRITZINGER 6mex

PPPPPPPPP

Package Management

At the moment Purescript is relying on bower, which
makes the time after a new release particularly annoying

But Purescript's community is working on a new
package manager: psc-package

And there is also purify, which wants to be like
Haskell's stack (reproducible builds)

PEER STRITZINGER 6mex

Package Management

Bower

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Project Setup

Pulp

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Backend Communication

JSON BERT

Why BERT?

our server runs on embedded

t's better to move as much computation as
possible to the client side

about one order of magnitude faster,
compared to jsx (pure Erlang library)

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

PPPPPPPPP

PEER STRITZINGER 6mex

Why BERT?

Time taken

(term to binary)

3

RT =1X

(C NIF) jiffy = 10x

(Erlang) jsx = 43x

Why NOT BERT?

Doesn’t support Erlang maps yet
(not a problem for us)

less of an ecosystem than JSON

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Which Framework?

we went with
Halogen

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

PPPPPPPPP

PEER STRITZINGER 6mex

Getting our bearings

Effects are now within a monad
instead of the tuple (model, effects)

We can have components, and
they can have state

How to break down into component”
Matches elm arch (0.16) up to a point

Halogen Structure

Component eval main
HalogenEffects

Compare with Elm arch

Query

action
request

Model |8 Action : : update INputs
_) VIEW Effects

S,
=X
S
Y
@

o pivs. PEER STRITZINGER cwmen

PPPPPPPPP

PEER STRITZINGER 6mex

Halogen Structure

Inputs values: the parent can send
information to the children

Messages: components can send
iInformation to the parent

Requests: the parent can request
information from the children

Halogen Component

|
\

Message Browser
m\ / e

v —>
R _>/

o pivs. PEER STRITZINGER cwmen

Porting Experience

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Things that happen while porting
from Elm to Purescript

copy pasting will partially work
types will tend naturally to get more abstracted

you will spend a fair chunk of time worrying
about what your monads are doing

type errors can get cryptic, work in small
chunks, so you can track them down

e.g. Html syntax

Elm Purescript

, HH.main_
[HH.div
HP.class_ (HH.ClassName "plots")
HA.role "region"
HA.label "Data plots”
HC.style do
C.width (C.pct 35.0)

~

class "plots”

attribute "role" "region"

attribute "aria-label" "Data plots”
, attribute "style" "width: 35%"

- N

~

gr—
Q.
[N
<
. NN pe—

[]]
, hr [class "vertical-separator"”]
, tabindex © 0 , HH.hr) .)
. attribute "role" "separator" [HP.class_ (HH.ClassName "vertical-separator")
. attribute "aria-valuemin" "@" ’ HP.tabIngex @)
, attribute "aria-valuemax" "100" , HA.role "separator
. attribute "aria-valuenow" "30" , HA.valueMin "@"
] , HA.valueMax "100"
[] , HA.valueNow "30"
, div | class "blocks" J
, attribute "role" "region" , HH.div
, attribute "aria-label" "Function blc [HP.class_ (HH.ClassName "blocks")
, tabindex © , HA.role "region"
, attribute "style" "width: 65%" , HA.label "Function blocks"
1 , HP.tabIndex @

HC.style do
C.width (C.pct 65.0)

1

o pivs. PEER STRITZINGER cwmen

Things that happen while porting
from Elm to Purescript

copy pasting will partially work
types will tend naturally to get more abstracted

you will spend a fair chunk of time worrying
about what your monads are doing

type errors can get cryptic, work in small
chunks, so you can track them down

Things that happen while porting
from Elm to Purescript

copy pasting will partially work
types will tend naturally to get more abstracted

you will spend a fair chunk of time worrying
about what your monads are doing

type errors can get cryptic, work in small
chunks, so you can track them down

Things that happen while porting
from Elm to Purescript

copy pasting will partially work
types will tend naturally to get more abstracted

you will spend a fair chunk of time worrying
about what your monads are doing

type errors can get cryptic, work in small
chunks, so you can track them down

Purescript Conclusion

Powerful
No limits on abstractions

't will take time to learn, but if you know EIm
(or other typed FP) you get a headstart

You don’t have to know everything to start

It's not obsessed about language UX,
but it's still good

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

Higher Abstractions in Erlang

Erlando

Erlando is a set of syntax extensions for Erlang. Currently it consists of three syntax extensions, all of which take the form
of parse-transformers.

« Cut: This adds support for cuts to Erlang. These are inspired by the Scheme form of cuts. Cuts can be thought of as
a light-weight form of abstraction, with similarities to partial application (or currying).

» Do: This adds support for do-syntax and monads to Erlang. These are heavily inspired by Haskell, and the monads
and libraries are near-mechanical translations from the Haskell GHC libraries.

» Import As: This adds support for importing remote functions to the current module namespace with explicit control of
the local function names.

oiee. pvs. PEER STRITZINGER 6men

Higher Abstractions in Elixir

Algae

=T
Bootstrapped /// “\\\ \\‘~§
algebraic data types \ _
for Elixir

g

witchcraft

oiee. pvs. PEER STRITZINGER 6men

Steps to get started with
Purescript

1. Get Purescript from NPM

Notorious Pug Mafia

npm Enterpri

“ p m find packages

purescript 3
m M o

PureScript binary wrapper that makes it seamlessly available via npm

Installation

Steps to get started with
Purescript

...Or psvm (version manager)

Neurotic Pink Mongooses npm Enterpris

“ p m find packages

psvm [

Purescript Version Manager

Installation

Steps to get started with
Purescript

2. Start reading “Purescript by Example”
m Store Read Write Support Blog '& Sign In m

PureScript by Example

PureScript by Example

1. Introduction
Table of Contents

1.7 Functional JavaScript
|. Introduction

Functional programming techniques have been making appearances in JavaScript for some

1.1 Functional JavaScript time now:

Types and Type Inference

e Libraries such as Underscore|S allow the developer to leverage tried-and-trusted functions
such as map, filter and reduce to create larger programs from smaller programs by

1.3 Polyglot Web Programming

1.4 Prerequisites

Steps to get started with
Purescript

3. read purescript-elm-compat

purescript-elm-compat

This package is the first fruits of an effort aimed at people who know Elm well and wish to give Purescript a try. The idea is
to make it as easy as possible to take Elm code (and EIm knowledge) and use it in Purescript.

The modules in this package are Purescript equivalents of ElIm core modules, with Elm. tacked on to the beginning. So,
Elm's Maybe becomes Elm.Maybe , EIm's List becomes Elm.List , etc.

With a few exceptions, the implementation wraps some existing Purescript module, making whatever adjustments are
necessary to maintain the ElIm API as closely as possible. Thus, this package is unlikely to be of interest to people who do
not know Elm -- there is already a more direct way to do everything this package does.

The larger project, still in progress, will also deal with things such as tasks, signals, graphics, HTML, etc. However, |
thought that this package might already be of some help to someone.

Compatibility

The modules are based on Elm 0.16, or version 3.0 of the EIm core libraries.

Steps to get started with
Purescript

4. Try out Flare

e

Leaves * G
Shadow

DIPL. PHYS. PEER STR'TZ' N G ER GMBH

Steps to get started with
Purescript

...or Pux

Build type-safe web applications with PureScript

Pux is a PureScript library for building web applications. Interactive Ul is modeled as a single state
transition function, Event -> State -> (State, HTML) which is run for every event. Pux also provides

tooling such as:

Isomorphic routing and rendering
Hot reloading

Render to React (or any virtual DOM library)

Time-travelling debug extension

Quick start

The starter app provides everything you need to get started:

git clone git://github.com/alexmingoia/pux-starter-app.git my-awesome-pux-app

cd my-awesome-pux-app

npm install

npm start

Steps to get started with
Purescript

5. meet the community

#irc “, m

#fpurescript #purescript o
@freenode @fpchat purescrlpt glt repo

o pivs. PEER STRITZINGER cwmen

Www.stritzinger.com

@doppioslash

DIPL. PHYS. PEER STR'TZ' NG ER GMBH

http://www.stritzinger.com

Win One of 3 Boards by
subscrlblng to the Newsletter
. conference
~until June 11th

o———"

GRISP

www.grisp.org

http://www.grisp.org

