
Building Single Page
Web Applications

with Purescript and Erlang
by @doppioslash

09/06/2017 - EUC2017 - Stockholm

Hi, I’m

Game
Developer

@doppioslash
www.lambdacat.com

Claudia Doppioslash

Functional
Programmer &

http://www.twitter.com/doppioslash
http://www.lambdacat.com

Peer Stritzinger GmbH

www.stritzinger.com

Functional and Failure Tolerant
Programming for Embedded,

Industrial Control and Automotive

http://www.stritzinger.com

www.grisp.org

luerl

Why are you here?

“I need to get some frontend code done,
and I hate Javascript”

Interested in Haskell-like languages

What are you getting

- choices of FP languages that target Javascript
- introduction to Purescript
- overview of framework choices
- thoughts from porting our project from Elm to Purescript

“A programmable logic controller, PLC, or programmable
controller is a digital computer used for automation"

Our Project
Visual IDE for PLC language IEC61499

(images from http://www.controldesign.com/articles/2007/202/?show=all)

http://www.controldesign.com/articles/2007/202/?show=all

Our Project
Inspired by Bret Victor’s “Inventing on Principle” talk

How visualising debugging helps

Our Project

Demo

PLC Language

Deployment

Compiler

Debug with IDE

BEAM files BEAM running
on bare metal Cowboy

BROWSER

Structure

PLC IDE

PLC BOARD

BEAM

PLC Program cowboy

web sockets

Requirements

Many platforms to support
All PC OSs & iPad Pro

Decent performance
Needs to be interactive
~30fps should be fine

Frontend Tech Choice

Web Technologies because cross-platform

Hence: Javascript, CSS, Svg

Wait a minute, Javascript?

…let’s not.

Some Possible Choices, Now
Ready now:

Typescript

ElmClojurescript

CoffeScript

Bucklescript

FableReason

Purescript

…and more…

They’re breeding like rabbits!

So many choices…

(…or you’ll have to port this program again…)

: “Please adopt me…”

“…I swear I won’t mention Monads”

Our First Choice

Elm
Is known for:

- very helpful type errors
- opinionated
- a pure and typed language, but simple

The Elm tradeoff
Preferring simpler types

(unlike e.g. Haskell) begets:

smooth learning curve
very helpful error messages

but also

more boilerplate
components?

abandoned Functional Reactive Programming

Our Second Choice
Purescript : “Look into the Type Vortex…”

“…to gain Type superpowers (and possibly burn)”

What is Purescript?
Pure Functional
Strongly Typed

Eagerly evaluated
Compiles to Javascript

Advanced Types (Typeclasses, HKT)
Haskell-like syntax (with all the squiggles)

No runtime
Generates readable Javascript

Open community, a bit of a roadmap

Like Elm

Purescript Pros vs JS

If it compiles, it works (90% of the time)
Confident refactoring (work in small steps)

Clean
Much fewer LOC

It has error messages
(certainly better than undefined is not a function)

Pros compared to Elm
Pursuit (search libs by type signature)

Clearer direction

Can work a lot with REPL
Great workflow, (e.g. Type holes)

Cons
Takes time to learn the higher abstractions

Many of the higher abstractions

Pursuit

Elm Search (unofficial)

Pros compared to Elm
Pursuit (search libs by type signature)

Clearer direction

Can work a lot with REPL
Great workflow, (e.g. Type holes)

Cons
Takes time to learn the higher abstractions

Many of the higher abstractions

Type errors are not as good as Elm

Milestones

Pros compared to Elm
Pursuit (search libs by type signature)

Clearer direction

Can work a lot with REPL
Great workflow, (e.g. Type holes)

Cons
Takes time to learn the higher abstractions

Many of the higher abstractions

Type errors are not as helpful as Elm

Pros compared to Elm
Pursuit (search libs by type signature)

Clearer direction

Can work a lot with REPL
Great workflow, (e.g. Type holes)

Cons
Takes time to learn the higher abstractions

Many of the higher abstractions

Type errors are not as helpful as Elm

Type holes and Search

Type holes and Search

Type Hole

Type holes and Search
Inferred Type

Type holes and Search

Suggested Functions

Pros compared to Elm
Pursuit (search libs by type signature)

Clearer direction

Can work a lot with REPL
Great workflow, (e.g. Type holes)

Cons
Takes time to learn the higher abstractions

Many of the higher abstractions

Type errors are not as helpful as Elm

Pros compared to Elm
Pursuit (search libs by type signature)

Clearer direction

Can work a lot with REPL
Great workflow, (e.g. Type holes)

Cons
Takes time to learn the higher abstractions

Many of the higher abstractions

Type errors are not as helpful as Elm

Pros compared to Elm
Pursuit (search libs by type signature)

Clearer direction

Can work a lot with REPL
Great workflow, (e.g. Type holes)

Cons
Takes time to learn the higher abstractions

Many of the higher abstractions

Type errors are not as helpful as Elm

“A monad is just a monoid in
the category of endofunctors”

Too hard?

Definitely you don’t have to know everything to start

Too hard?

Coming from a language like Elm you only need to
learn how to use a few Monads (use, not write),

and get familiar with Typeclasses to start getting
productive in Purescript

Keeping up with the Haskell
type treadmill

Researchers are inventing and discovering new
ideas all the time, you’ll never learn them all.

Just go at your own pace

The higher abstractions will still be there tomorrow

Why Purescript after Elm?

Why Purescript after Elm?
Exhibit 1: the type system is a great feature of Elm

Purescript’s has more features. (Simplicity vs Power)

Why Purescript after Elm?

- once you get restless with Elm’s boilerplate, you’re
likely ready for more powerful abstractions

- it’s similar enough that porting code is relatively
straightforward

- it's possible to implement Elm in it, but not the other
way around (general purpose)

- it benefits from the hindsight of following Haskell from
a time distance

Why Purescript after Elm?

- once you get restless with Elm’s boilerplate, you’re
likely ready for more powerful abstractions

- it’s similar enough that porting code is relatively
straightforward

- it's possible to implement Elm in it, but not the other
way around (general purpose)

- it benefits from the hindsight of following Haskell from
a time distance

purescript-elm

Why Purescript after Elm?

- once you get restless with Elm’s boilerplate, you’re
likely ready for more powerful abstractions

- it’s similar enough that porting code is relatively
straightforward

- it's possible to implement Elm in it, but not the other
way around (general purpose)

- it benefits from the hindsight of following Haskell from
a time distance

Why Purescript after Elm?

- once you get restless with Elm’s boilerplate, you’re
likely ready for more powerful abstractions

- it’s similar enough that porting code is relatively
straightforward

- it's possible to implement Elm in it, but not the other
way around (general purpose)

- it benefits from the hindsight of following Haskell from
a time distance

Philosophy Differences

In Purescript there are many possible
ways of structuring your app

Elm gives you only one possible program
structure (Elm arch)

Philosophy Differences

In Purescript you have most of the type
features you have in Haskell, longer learning

curve

Elm is made to be simple above anything
else, have a quick learning curve

Reflection on
Elm - Purescript - Haskell

- Simplest
- Focused on UX
- One way to do things
- Removes all historical

baggage
- Great entry level

language
- only targets web

browsers

- Sensible
- UX is fairly good
- Still a lot of power
- Eagerly

evaluated, hence
simpler

- general purpose
- many backends

(C++, Erlang, Js)

- Research language
- Most powerful
- Least good UX
- Most historical

baggage
- Laziness adds

complexity
- Compiles to native

code, llvm, C, etc

Frameworks Overview

- Pux
- Thermite
- purescript-react

- Halogen
- Flare
- Optic UI

Wrapping Pure

Frameworks

Pux
Optic UI

Type Complexity continuum

ThermiteFlare Halogen

Easy
Here be

free monads
Here be
lenses

Why Flare?

Why not?

- Limited to a specific use case
- Need to understand applicative functor syntax:
thing <$> thing <*> thing

- Great to start with
- Easy to make cool interactive graphs

Why Flare?

plot :: Int -> Boolean -> Number -> Drawing
plot n s time = shadow (style s) $
 filled (fillColor (hsl 220.0 0.6 0.5)) $
 path (map point angles)

 where point phi = { x: 50.0 + radius phi * cos phi
 , y: 50.0 + radius phi * sin phi }
 angles = map (\i -> 2.0 * pi / toNumber points * toNumber i) (0 .. points)
 points = 200
 radius phi = 48.0 * abs (cos (0.5 * toNumber n * (phi + phi0)))
 phi0 = 0.001 * time
 style false = mempty
 style true = shadowColor black <> shadowOffset 2.0 2.0 <> shadowBlur 2.0

ui4 = lift3 plot (intSlider "Leaves" 2 10 6)
 (boolean "Shadow" false)
 (lift animationFrame)

Why Pux?
Very similar to the Elm architecture (0.16)

Svg support already included

Probably the simplest Purescript framework

Why not?

React dependencies /0\

Interactive React debugger can be wired in

On the pain of installing React

(Though the React interactive debugger is nice)

But!

Now it can use PReact instead of React

Pux Structure

Compare with the Elm Architecture (0.16)

Model Action
view

update inputs
Effects

State Action
view

update inputs
Aff

Counter Code
data Action = Increment | Decrement

type State = Int

update :: Action -> State -> State
update Increment state = state + 1
update Decrement state = state - 1

view :: State -> Html Action
view state =
 div []
 [button [onClick (const Increment)]
 [text "Increment"]
 , span [] [text (show state)]
 , button [onClick (const Decrement)]
 [text "Decrement"]
]

State

Action

view

update

Thermite

Lenses and stuff Lenses and stuff

Optic UI
Wraps React Pure Purescript

Written by Phil Freeman,
Purescript’s author

Why Halogen?
Doesn’t depend on React

It’s used in production by Slamdata, on a pretty
impressive app

> 1 people developing it
Nice Html DSL

Why not?
Argh, the types!! My eyes burn!

aka it’s just a bit hard

v1.0.0 has arrived!

Slamdata

Why Halogen?
Doesn’t depend on React

It’s used in production by Slamdata, on a pretty
impressive app

> 1 people developing it
Nice Html DSL

Why not?
Argh, the types!! My eyes burn!

aka it’s just a bit hard

v1.0.0 has arrived!

Halogen Structure

State Query Component eval
render

main
action
request HalogenEffects

Compare with Pux

State Action
view

update inputs
Aff

Halogen Structure
-- | The state of the component
type State = Boolean

-- | The query algebra for the component
data Query a
 = ToggleState a
 | IsOn (Boolean -> a)

data Message = Toggled Boolean

type Input = Unit

-- | The component definition
myButton :: forall m. H.Component HH.HTML Query Input Message m
myButton =
 H.component
 { initialState: const initialState
 , render
 , eval
 , receiver: const Nothing
 }
 where

State

Component

action
request

Query

Halogen Structure

 initialState :: State
 initialState = false

 render :: State -> H.ComponentHTML Query
 render state =
 let
 label = if state then "On" else "Off"
 in
 HH.button
 [HP.title label
 , HE.onClick (HE.input_ Toggle)
]
 [HH.text label]

render

Halogen Structure

 eval :: Query ~>
 H.ComponentDSL State Query Message m
 eval = case _ of
 Toggle next -> do
 state <- H.get
 let nextState = not state
 H.put nextState
 H.raise $ Toggled nextState
 pure next
 IsOn reply -> do
 state <- H.get
 pure (reply state)

eval

Porting choices

1. Which tools?

2. Which framework?

Which tools?

Package Management

But Purescript’s community is working on a new
package manager: psc-package

At the moment Purescript is relying on bower, which
makes the time after a new release particularly annoying

And there is also purify, which wants to be like
Haskell’s stack (reproducible builds)

Bower:
The day after a new release

Bower:
The day after a new release

Bower always gets the latest version of a library

Bower has no clue about Purescript

Until all libraries are updated to latest, chaos

Solution: manually tell bower the version you want

Package Management

But Purescript’s community is working on a new
package manager: psc-package

At the moment Purescript is relying on bower, which
makes the time after a new release particularly annoying

And there is also purify, which wants to be like
Haskell’s stack (reproducible builds)

Package Management

But Purescript’s community is working on a new
package manager: psc-package

At the moment Purescript is relying on bower, which
makes the time after a new release particularly annoying

And there is also purify, which wants to be like
Haskell’s stack (reproducible builds)

Package Management

Bower

Project Setup

Pulp

Backend Communication

JSON BERT

Why BERT?

our server runs on embedded

it’s better to move as much computation as
possible to the client side

about one order of magnitude faster,
compared to jsx (pure Erlang library)

Why BERT?

(term to binary) BERT = 1x
(C NIF) jiffy = 10x

 (Erlang) jsx = 43x

Time taken

Why NOT BERT?

Doesn’t support Erlang maps yet
(not a problem for us)

less of an ecosystem than JSON

Which Framework?

we went with
Halogen

Getting our bearings

Effects are now within a monad
instead of the tuple (model, effects)

We can have components, and
they can have state

How to break down into component?
Matches elm arch (0.16) up to a point

Halogen Structure

State Query Component eval
render

main
action
request HalogenEffects

Compare with Elm arch

Model Action
view

update inputs
Effects

Halogen Structure
Query

Messages: components can send
information to the parent

Inputs values: the parent can send
information to the children

Requests: the parent can request
information from the children

Halogen Component

Query

State

ViewUpdate
Component

Browser
input

Query

Message

Inputs

Porting Experience

Query

Things that happen while porting
from Elm to Purescript

copy pasting will partially work

types will tend naturally to get more abstracted

you will spend a fair chunk of time worrying
about what your monads are doing

type errors can get cryptic, work in small
chunks, so you can track them down

e.g. Html syntax

Elm Purescript

copy pasting will partially work

types will tend naturally to get more abstracted

you will spend a fair chunk of time worrying
about what your monads are doing

type errors can get cryptic, work in small
chunks, so you can track them down

Things that happen while porting
from Elm to Purescript

copy pasting will partially work

types will tend naturally to get more abstracted

you will spend a fair chunk of time worrying
about what your monads are doing

type errors can get cryptic, work in small
chunks, so you can track them down

Things that happen while porting
from Elm to Purescript

copy pasting will partially work

types will tend naturally to get more abstracted

you will spend a fair chunk of time worrying
about what your monads are doing

type errors can get cryptic, work in small
chunks, so you can track them down

Things that happen while porting
from Elm to Purescript

Purescript Conclusion

Powerful

No limits on abstractions

It will take time to learn, but if you know Elm
(or other typed FP) you get a headstart

You don’t have to know everything to start

It’s not obsessed about language UX,
but it’s still good

Higher Abstractions in Erlang

Erlando

Higher Abstractions in Elixir

Steps to get started with
Purescript

1. Get Purescript from NPM

Steps to get started with
Purescript

…or psvm (version manager)

Steps to get started with
Purescript

2. Start reading “Purescript by Example”

Steps to get started with
Purescript

3. read purescript-elm-compat

Steps to get started with
Purescript

4. Try out Flare

Steps to get started with
Purescript

…or Pux

Steps to get started with
Purescript

5. meet the community

#purescript
@freenode

#purescript
@fpchat purescript git repo

www.stritzinger.com

@doppioslash

http://www.stritzinger.com

www.grisp.org

Win One of 3 Boards by
subscribing to the Newsletter

during the conference
until June 11th

http://www.grisp.org

