Let's make release
upgrades great
again!

e LuisRascao

e Work @ Miniclip

e Erlang’Ingsince
2014

u u u
M I n IC ll p (paid this trip for me)

e Mobile games company

o Started out with mostly Flash games
o Now focused on mobile

e Hassome big hits in the stores

o 8BallPool
o Soccer Stars
o Agar.io

e I'mthe tech lead of the 8 Ball Pool
server

8 Ball Pool

Miniclip’s biggest hit

18 million daily active users

750K peak concurrent users

26 machine cluster just for the game servers
Mostly Erlang

Bugs amirite?

“Debugging is like being the detective in a crime
movie where you are also the murderer.”

Filipe Fortes @fortes

There Is nho escaping them

e If you write software you'll also write bugs
e Corollary:if you don’t have bugs it’s because you're not
writing software

THIS I!I‘NE TIME
it

Y
- -,
\ ! i
-3
imgfiip.com LT i 1 E =

8 Ball Pool

Free Coins)
Collect Now!

B0

OmOgm o
SYDNEY:
%&9‘

- ' GET ARING!
- .

Prize: 200 & ’f}:

Players Online: 100 590

‘ r
. Entry fee: 100 %}

Standard
/-

Edge
23h59m40s * .

What do you do?

e Stop the servers, fix the bug, start them again
o Involves downtime
o Moneyis lost

What do you do?

e Blue/Greendeployment

o Assuming a load balancer in front of your servers
m Blue and Green are identical
o Direct traffic to the canary node running the fix
o Ensure the canary node is running as expected
o Worksfine
m If you have persistent connections you'll have to wait for
clients to disconnect from the Blue stack

m You'll probably want to automate this (or have someone else
doit)

Hot code loading

e Erlang/OTP offers us a way of
updating running code without
any downtime

e Alotsimpler than Blue/Green

deployments (of course it depends on the
fix)

H OW? (the simple approach)

e Build the .beam file containing your fix
e Overwrite the buggy one on disk
e Attachtothe running node

o 1(Module)

e Done

H OW? (the simple approach)

e Messy business
o If there’s more than one module you better be damn

sure of the order in which you load them

o Your app says it’s running version x.y.z but that’s not
true anymore

o |If you changed something in your sys.config you
should also set it at the console and update the file

on disk

H OW? (the simple approach)

It’s not all bad

e You get to apply your changes incrementally and check
for errors on each step

Always remember though

e Bug fixes can have bugs themselves, most of the times
they’re nastier than the original ones

Hot code loading

e Two code pointers are kept per module

o Current - points to the currently running code
o Old - starts out as nil

e When you load a new version of the module

o Current - points to the new code
o Old - points to the old code

e Allfully qualified function calls go to the current version

Hot code loading

e Takeapeekatlib/stdlib/src/c.erl
1(Mod) ->
code:purge(Mod),
code:load file(Mod).
e code:purge(Mod) isabrutal purge

e There'salso code:soft purge(Mod)

Purging

e Soft

o Checks all processes, if any are running old code (with
erlang:check process code(Pid, Mod)) fails the call

e Brutal
o Checks all processes, kills any that are running old code

Stickiness

e Youcandeclare adirectory in the search path as “sticky”
o code:stick dir(Dir)

o code:unstick dir(Dir)
e code:load file(Module) will fail if Module is on a sticky
dir

Release upgrades

e Thestructured way of changing code with no downtime
e Much more than just loading modules at the shell
o gen_*:code_change/3

o Starts new applications
o Reloads sys.config and informs applications of changes made to it

o Upgrades and downgrades applications

Release upgrades (downsides)

e Really complicated
o LYSE describes release upgrades as the “9th circle of Erl”
o Fred does a walkthrough on the relup chapter with all the manual
steps
m Most people probably skip it (I know | did)

Release upgrade workflow

e It begins by writing the application upgrade file (i.e.

appup)
e Theapplication upgrade is translated to a release

upgrade file (i.e. relup)
e Withtherelup + new code you're ready to apply the

release upgrade on a running instance

Application upgrade

e Afile containing sets of instructions that define how an
application is upgraded or downgraded
e It'sasingle term of the format

{Vsn, [{UpFromVsn, Instructions}, ...],
[{DownToVsn, Instructions}, ...]}.

. Sayyou’re upgrading from 1.9to 2.0

{"2.0", [{"1.9", Instructions}, ...],
[{"1.9", Instructions}, ...]}.

Application upgrade

e Severalinstructions available to you

o load _module
m {load_module, Mod, PrePurge, PostPurge, DepMods}
m PrePurge, PostPurge can be either brutal or soft
m DepModsis alist of modules that should be loaded before this

one

o add_module / delete_module
m Bothtake DepMods

o add_application/remove_application / restart_application

Application upgrade

update
o Synchronized update of processes running the module to upgrade
o Obtains all supervised processes (ie. recursively searching down from the main
supervisor)
o lterates through all of them asking the ones that use the module to suspend
themselves
o gen_* processes all have the code_change/3,4 callback

m Module:code_change(OldVsn, State, Extra)

m Allows you to migrate state structure. When this method is called you
get the old state (while running new code) and return new state

m The Extraargumentis additional data fed directly from the appup for
custom processing

Application upgrade

e {update, Mod, ModType, Timeout, Change, PrePurge,
PostPurge, DepMods}

o ModType either static or dynamic
o Changeis either soft Or {advanced, Extra}

m that's where the Extra argument in code_change comes from
o Timeout is the time allowed to wait for the suspend request

Configuration changes

e After the upgrade, the application controller compares
the old and new configuration parameters for all
applications

e |tthencalls config change/3 for all applications specified in
the mod key of the .app file

® Module:config change(Changed, New, Removed)

Doing it by hand (short version)

e Write the .appup file
e Giveittosystools and ask it tocreate arelup file

O

O

systools:make_relup/3,4

systools:make_tar/1,2

e Unpacking and upgrading the release

O

@)

O

release_handler:unpack release/1
release_handler:which _releases/0,1
release_handler:install _release/1,2

release_handler:make_permanent/1

Automation (wsing rebars)

e There are some plugins already that take away some of

this manual work

o erlup (https://github.com/soranoba/erlup)

o relflow (https://github.com/RJ/relflow)

o rebar3_appup_plugin
(https://github.com/Irascao/rebar3_appup_plugin)

e |'ll be talking about rebar3_appup_plugin (which is the
one | wrote)

https://github.com/soranoba/erlup
https://github.com/RJ/relflow
https://github.com/lrascao/rebar3_appup_plugin

Automation (using rebar3_appup_plugin)

Appup generation

Module dependencies

Appup.src compilation
Automatic state record migration

Appup generation

e Generate two release versions
o Theoneyou'reinand the one you want to upgrade to

® rebar3 appup generate

o Compares two releases to find out what was changed and generate
appropriate instructions

o add/delete/load/upgrade modules

o Check for changes in supervisor spec, generate instructions to
start/stop children

Module dependencies

e Use xref to determine dependencies of each

new/changed module
o Only static dependencies are caught (ie. Module: Function)
o Nosupport for dynamic calls (made through erlang:apply for
example)

Appup.src compilation

e Most of the times you'll want to add your .appup file to
source control

e Follow the same principle as .app.src
o saveyour .appup as an.appup.src file alongside your other source
files
e The pluginwill pick it up, validate, template and evaluate

it

Appup.src compilation

e Templating
o Using mustache template variables
m {{vsn}}- current version of the release

e FEvaluation
o Thewholefile is evaluated as if it were an escript file
o STATE (rebar3’s state) variable is available
o Methods from both your release and rebar3 are available to you

e Validation
o Enforces avalid .appup format at the end

Appup.src compilation

%% find our app info in rebar's STATE
AppInfo = rebar3 appup utils:find app info(<<"relapp">>, STATE),
"{{vsn}}" = rebar_app_info:original_vsn(AppInfo),

{"{{vsn}}",
[
{<<".*">>, [{restart_application, relapp}]}
1,
[
{<<".*">>, [{restart_application, relapp}]}
]

State migration

e Processes keep state, usually through a record
o If you need to change the record structure it’s going to be tricky

e Waystodoit

o Manually, with a bunch of er1ang:setelement/2 (it will hurt your eyes)
o Ulf Wiger’s exprecs parse transform in the parse_trans project
m Generates a '#convert' method for every record
m Youdeclare both versions of the record in the module and
convert them on code_change
o Usingthe plugin’s code injection facility

State mlg ration (through code injection)

e Upon request, the plugin will inject r
code into the code_change method that
takes care of the conversion
between record versions

e You need todeclare the name of the
record that holds the state

O -state_record(some_record).

State mlg ration (through code injection)

e Upon request the plugin will
o Get the abstract code of the new version beam
Get the record definitions of the current/previous versions
Inject the old record definition and code that ports it to the new one
into the new version abstract code
o Overwrite the beam file

e Needsdebug infotobeon

e Whentherelease upgrade happens and code change
gets called the State is already the new one

e Theoldstateis still keptinthe Extra argument as a tuple

@) {old_state, OldState}

Thanks!

mailto:luis.rascao@gmail.com
mailto:luis.rascao@gmail.com
http://lrascao.github.io
http://lrascao.github.io
https://github.com/lrascao/
https://github.com/lrascao/

