
Let’s make release
upgrades great
again!

Who am i?

● Luis Rascão
● Work @ Miniclip
● Erlang’Ing since

2014

Miniclip (paid this trip for me)

● Mobile games company
○ Started out with mostly Flash games

○ Now focused on mobile

● Has some big hits in the stores
○ 8 Ball Pool

○ Soccer Stars

○ Agar.io

● I’m the tech lead of the 8 Ball Pool
server

8 Ball Pool

● Miniclip’s biggest hit
● 18 million daily active users
● 750K peak concurrent users
● 26 machine cluster just for the game servers
● Mostly Erlang

Bugs amirite?

“Debugging is like being the detective in a crime
movie where you are also the murderer.”

Filipe Fortes @fortes

There is no escaping them

● If you write software you’ll also write bugs
● Corollary: if you don’t have bugs it’s because you’re not

writing software

8 Ball Pool

What do you do?

● Stop the servers, fix the bug, start them again
○ Involves downtime

○ Money is lost

What do you do?

● Blue/Green deployment
○ Assuming a load balancer in front of your servers

■ Blue and Green are identical

○ Direct traffic to the canary node running the fix

○ Ensure the canary node is running as expected

○ Works fine

■ If you have persistent connections you’ll have to wait for

clients to disconnect from the Blue stack

■ You’ll probably want to automate this (or have someone else

do it)

Hot code loading

● Erlang/OTP offers us a way of
updating running code without
any downtime

● A lot simpler than Blue/Green
deployments (of course it depends on the

fix)

How? (the simple approach)

● Build the .beam file containing your fix
● Overwrite the buggy one on disk
● Attach to the running node

○ l(Module)

● Done

How? (the simple approach)

● Messy business
○ If there’s more than one module you better be damn

sure of the order in which you load them
○ Your app says it’s running version x.y.z but that’s not

true anymore
○ If you changed something in your sys.config you

should also set it at the console and update the file
on disk

How? (the simple approach)

It’s not all bad

● You get to apply your changes incrementally and check
for errors on each step

Always remember though

● Bug fixes can have bugs themselves, most of the times
they’re nastier than the original ones

Hot code loading

● Two code pointers are kept per module
○ Current - points to the currently running code

○ Old - starts out as nil

● When you load a new version of the module
○ Current - points to the new code

○ Old - points to the old code

● All fully qualified function calls go to the current version

Hot code loading

● Take a peek at lib/stdlib/src/c.erl

l(Mod) ->

 code:purge(Mod),

 code:load_file(Mod).

● code:purge(Mod) is a brutal purge

● There’s also code:soft_purge(Mod)

Purging

● Soft
○ Checks all processes, if any are running old code (with

erlang:check_process_code(Pid, Mod)) fails the call

● Brutal
○ Checks all processes, kills any that are running old code

Stickiness

● You can declare a directory in the search path as “sticky”
○ code:stick_dir(Dir)

○ code:unstick_dir(Dir)

● code:load_file(Module) will fail if Module is on a sticky

dir

Release upgrades

● The structured way of changing code with no downtime
● Much more than just loading modules at the shell

○ gen_*:code_change/3

○ Starts new applications

○ Reloads sys.config and informs applications of changes made to it

○ Upgrades and downgrades applications

Release upgrades (downsides)

● Really complicated
○ LYSE describes release upgrades as the “9th circle of Erl”

○ Fred does a walkthrough on the relup chapter with all the manual

steps

■ Most people probably skip it (I know I did)

Release upgrade workflow

● It begins by writing the application upgrade file (i.e.
appup)

● The application upgrade is translated to a release
upgrade file (i.e. relup)

● With the relup + new code you’re ready to apply the
release upgrade on a running instance

Application upgrade

● A file containing sets of instructions that define how an
application is upgraded or downgraded

● It’s a single term of the format

{Vsn, [{UpFromVsn, Instructions}, ...],

 [{DownToVsn, Instructions}, ...]}.

● Say you’re upgrading from 1.9 to 2.0

{"2.0", [{"1.9", Instructions}, ...],

 [{"1.9", Instructions}, ...]}.

Application upgrade

● Several instructions available to you
○ load_module

■ {load_module, Mod, PrePurge, PostPurge, DepMods}

■ PrePurge, PostPurge can be either brutal or soft

■ DepMods is a list of modules that should be loaded before this

one

○ add_module / delete_module

■ Both take DepMods

○ add_application / remove_application / restart_application

Application upgrade

● update
○ Synchronized update of processes running the module to upgrade
○ Obtains all supervised processes (ie. recursively searching down from the main

supervisor)
○ Iterates through all of them asking the ones that use the module to suspend

themselves
○ gen_* processes all have the code_change/3,4 callback

■ Module:code_change(OldVsn, State, Extra)
■ Allows you to migrate state structure. When this method is called you

get the old state (while running new code) and return new state
■ The Extra argument is additional data fed directly from the appup for

custom processing

Application upgrade

● {update, Mod, ModType, Timeout, Change, PrePurge,
PostPurge, DepMods}

○ ModType either static or dynamic

○ Change is either soft or {advanced, Extra}

■ that's where the Extra argument in code_change comes from

○ Timeout is the time allowed to wait for the suspend request

Configuration changes

● After the upgrade, the application controller compares
the old and new configuration parameters for all
applications

● It then calls config_change/3 for all applications specified in
the mod key of the .app file

● Module:config_change(Changed, New, Removed)

Doing it by hand (short version)

● Write the .appup file
● Give it to systools and ask it to create a relup file

○ systools:make_relup/3,4

○ systools:make_tar/1,2

● Unpacking and upgrading the release
○ release_handler:unpack_release/1

○ release_handler:which_releases/0,1

○ release_handler:install_release/1,2

○ release_handler:make_permanent/1

Automation (using rebar3)

● There are some plugins already that take away some of
this manual work

○ erlup (https://github.com/soranoba/erlup)

○ relflow (https://github.com/RJ/relflow)

○ rebar3_appup_plugin

(https://github.com/lrascao/rebar3_appup_plugin)

● I'll be talking about rebar3_appup_plugin (which is the
one I wrote)

https://github.com/soranoba/erlup
https://github.com/RJ/relflow
https://github.com/lrascao/rebar3_appup_plugin

Automation (using rebar3_appup_plugin)

● Appup generation
● Module dependencies
● Appup.src compilation
● Automatic state record migration

Appup generation

● Generate two release versions
○ The one you’re in and the one you want to upgrade to

● rebar3 appup generate

○ Compares two releases to find out what was changed and generate

appropriate instructions

○ add/delete/load/upgrade modules

○ Check for changes in supervisor spec, generate instructions to

start/stop children

Module dependencies

● Use xref to determine dependencies of each
new/changed module

○ Only static dependencies are caught (ie. Module:Function)

○ No support for dynamic calls (made through erlang:apply for

example)

Appup.src compilation

● Most of the times you’ll want to add your .appup file to
source control

● Follow the same principle as .app.src
○ save your .appup as an .appup.src file alongside your other source

files

● The plugin will pick it up, validate, template and evaluate
it

Appup.src compilation

● Templating
○ Using mustache template variables

■ {{vsn}} - current version of the release

● Evaluation
○ The whole file is evaluated as if it were an escript file

○ STATE (rebar3’s state) variable is available

○ Methods from both your release and rebar3 are available to you

● Validation
○ Enforces a valid .appup format at the end

Appup.src compilation

%% find our app info in rebar's STATE

AppInfo = rebar3_appup_utils:find_app_info(<<"relapp">>, STATE),

"{{vsn}}" = rebar_app_info:original_vsn(AppInfo),

{"{{vsn}}",

 [

 {<<".*">>, [{restart_application, relapp}]}

],

 [

 {<<".*">>, [{restart_application, relapp}]}

]

}.

State migration

● Processes keep state, usually through a record
○ If you need to change the record structure it’s going to be tricky

● Ways to do it
○ Manually, with a bunch of erlang:setelement/2 (it will hurt your eyes)

○ Ulf Wiger’s exprecs parse transform in the parse_trans project

■ Generates a '#convert' method for every record

■ You declare both versions of the record in the module and

convert them on code_change

○ Using the plugin’s code injection facility

State migration (through code injection)

● Upon request, the plugin will inject
code into the code_change method that
takes care of the conversion
between record versions

● You need to declare the name of the
record that holds the state

○ -state_record(some_record).

State migration (through code injection)

● Upon request the plugin will
○ Get the abstract code of the new version beam

○ Get the record definitions of the current/previous versions

○ Inject the old record definition and code that ports it to the new one

into the new version abstract code

○ Overwrite the beam file

● Needs debug_info to be on
● When the release upgrade happens and code_change

gets called the State is already the new one
● The old state is still kept in the Extra argument as a tuple

○ {old_state, OldState}

Demo

Thanks!

luis.rascao@gmail.com
http://lrascao.github.io
https://github.com/lrascao

mailto:luis.rascao@gmail.com
mailto:luis.rascao@gmail.com
http://lrascao.github.io
http://lrascao.github.io
https://github.com/lrascao/
https://github.com/lrascao/

