Erlang-D Irace

Garry Bulmer

Team Dlrace: Tim Becker

Copyright Garry Bulmer 2008

What I'm going to talk about

Introduction to DTrace & DIrace Architecture
Demo of DIrace with ‘one liners’
Erlang-Dtrace Vision & “Fit’

Erlang VM Architecture

Current Erlang DTrace Scope

Erlang-DTrace Demo

Future

Copyright Garry Bulmer 2008

What is D Irace?

“Dlirace is a comprehensive dynamic tracing facility ...

that can be used by administrators and developers on live
production systems to examine the behavior of both user
programs and of the operating system itself.

DTrace enables you to - explore your system to understand how
it Works, track down performance problems across many
layers of software, or locate the cause of aberrant behavior.

DTrace lets you create your own custom programs to
dynamically instrument the system and provide immediate,
concise answers to arbitrary questions”

Source: Sun Microsystems “Solaris Dynamic Tracing Guide”
Copyright Garry Bulmer 2008

How does D Irace work'?

KEY: Dynamically enabled - even in Production
Probes within OS kernel - “Zero cost’ when disabled
‘Providers’ - subsystem managing a group of Probes
= Probes observe events, and capture data

x Providers forward events and data to ‘D programs’
User applications - observed by ‘PID’ Provider

= Probes observe function entry, exit & parameters

Copyright Garry Bulmer 2008

D Trace End-to-End

_ Firefox ~ Apache JVM

Javascript
dtrace

libdtrace

syscall

DTrace
Iyeroed il

profile
vminfo

sysinfo
Copyright Garry Bulmer 2008

Dlrace Demo - one liners’

Copyright Garry Bulmer 2008

Erlang-D Trace End-to-

Copyright Garry Bulmer 2008

Erlang VM Architecture

v module(fibn)
fib(0) ->
fio(N) ->

Processes

V v module(xml)
tag('<") ->
Erlang ¢ ¢ tag(HIT]) ->

Erlang code

Messaging Memory Process Dynamic Global Built in
& Process Allocation & Spawn & Code Trace State Functions
'‘EXIT! GC Scheduling Update (BIFs)

Erlang VM (Node) C code

syscall

Copyright Garry Bulmer 2008

Erlang’s Dlrace Fit’

DTrace ‘PID’ Provider can observe G programs

x Good: Erlang VM is C

= Bad: user needs to understand Erlang VM internals !
Erlang VM-managed, Fine-Grain ‘Process’

= Erlang processes are invisible to DTrace

Erlang data is dynamically typed

= D frace uses static ‘C-style’ data types

Erlang scripts are opague data to DIrace

Copyright Garry Bulmer 2008

Erlang D Irace Implementation

= DTrace Statically Defined Tracing (SDT) Probes
x [nsert SDT probes (C) into Erlang VM
= Probes in key parts of Erlang VM

» Process management, GG, Messaging, Code Load ...

x ‘Decode’ Eflang scripts (7)

= Add new DTrace functions for Erlang Developers

Copyright Garry Bulmer 2008

Erlang has Dynamic Iracing !

x Aim to complement; not replace

Longer term Integrate Erlang tracing and Dlrace
= Provide Erlang DTrace interface functions
= Exploit Erlang’s Dynamic Code Update

x Can load Erlang code in production

Copyright Garry Bulmer 2008

V002 Erlang-D Irace Scope

x New DTrace BIFs (explicitly use DTrace probes in Erlang)
x Statically Defined Tracing Probes inserted into Erlang VM
x Processes, Memory (GC),
= Global State (Registry)

x Use Erlang VM Trace facilities from Erlang D Irace BIF’s

Copyright Garry Bulmer 2008

Erlang-Dtrace Demo

Adium ejabberd

Jabber/XMPP Elelrie) W Jabber/XMPP

. 'Proxy’
Client i i Server

!

DTlrace

Copyright Garry Bulmer 2008

'Proxy' Code

Copyright Garry Bulmer 2008

Future Directions

Better use of existing Erlang Trace facilities

= Dynamic DIrace Probes

Correlate Messages across Erlang Processes

Like to handle Erlang Data Types (e.g. Lists) in DTrace ...
x .. and not flatten to strings in prolbe code

= Dynamic DIrace Iype extensions

Distributed/Clustered DTrace (one day ...)

Copyright Garry Bulmer 2008

More Information

Erlang-D Trace google group

Source hosted at opensolaris.org

Co-developer is Tim Becker

Thanks to Bryan Gantrill, Sun Microsystems for
encouragement and support

Copyright Garry Bulmer 2008

Questions

Copyright Garry Bulmer 2008

