
Building a transactional distributed
data store with Erlangdata store with Erlang

Alexander Reinefeld, Florian Schintke, Thorsten Schütt

Zuse Institute Berlin,
onScale solutions GmbH

Transactional data store - What for?
Web 2.0 services: shopping, banking, gaming, …

don’t need full SQL semantics key/value DB often suffice− don t need full SQL semantics, key/value DB often suffice
e.g. Mike Stonebreaker: “One size does not fit all”

Scalability matters
− >104 accesses per sec.
− many concurrent writes

Traditional Web 2.0 hosting

Clients

Traditional Web 2.0 hosting

Clients

Traditional Web 2.0 hosting

Clients

.

Traditional Web 2.0 hosting

Clients

.

Now thinkNow think bigbigNow thinkNow think bigbigNow thinkNow think big.big.
ReallyReally BIGBIG

Now thinkNow think big.big.
ReallyReally BIGBIGReallyReally BIG.BIG.ReallyReally BIG.BIG.

N t h f t d i t d b tNot how fast our code is today, but:

− Can it “scale out”?
− Can it run in parallel? … distributed?
− Any common resources causing locking?y g g

AAsymptotic performance matters!symptotic performance matters!

Our Approach: P2P makes it scalable

“arbitrary“ number of clients

Web 2.0 services
with P2P nodes
i d t tin datacenters

x
x

x

Our Approach

Application Layer

crash
recovery

model Key/Value Store (= simple database) strong data consistency

Transaction Layer implements ACID

model y strong data consistency

Transaction Layer

improves availability

implements ACID

Replication Layer

P2P Layer
crash stop

d l
implements

at the cost of consistencyReplication Layer

P2P Layermodel - scalability
- eventual consistency

unreliable, distributed nodes

P2P LAYER
providing a scalable distributed data store:

P2P LAYER

Key/Value Store
for storing “items” (= “key/value pairs”)

synonyms: “key/value store” “dictionary” “map”− synonyms: key/value store , dictionary , map , …

just 3 ops
− insert(key, value) Turing Award Winnersinsert(key, value)

− delete(key)

l k (k)

Key Value
Backus 1977

− lookup(key) Hoare 1980
Karp 1985
Knuth 1974Knuth 1974
Wirth 1984
.

Chord# - Distributed Key/Value Store
key space: total order on items (strings, numbers, …)

nodes have a random key as their position in ringnodes have a random key as their position in ring

items are stored on the successor node (clockwise)

(Backus, …, Karp]
keys

Key Value
Backus 1977

(Karp, …, Knuth]

itemChord#Chord#

Hoare 1980
Karp 1985
Knuth 1974

item
distributed
key/value

store

distributed
key/value

store Knuth 1974
Wirth 1984
.nodes

Routing Table and Data Lookup
Building the routing table

log2N pointers

exponentially spaced pointers

Chord#Chord#

Routing Table and Data Lookup
Building the routing table

log2N pointers
Retrieving items

≤ log2N hops

exponentially spaced pointers Example:
lookup (Hoare)
started from here

(Backus – Karp]

Chord#Chord# Chord#Chord#

Churn
Nodes join, leave, or crash at any time

Need “failure detector” to check aliveness of nodes
− failure detector may be wrong: Node dead? Or just slow

network?

Churn may cause inconsistenciesChurn may cause inconsistencies
− need local repair mechanism

Responsibility Consistency

Violated responsibility consistency caused by imperfect

f il d t t B th N3 d N4 l i ibilit f it kfailure detector: Both, N3 and N4 claim responsibility for item k

N3 N3
crashed

N2
k

N3
!

N1 N4

Lookup Consistency

Violated lookup consistency caused by imperfect failure

d t t l k (k) t N1 N3 b t t N2 N4detector: lookup(k): at N1 N3, but at N2 N4

N2 N2
crashed

N2 N3

kcrashed
!

N1 N4

N3N3N3
crashed

!!

How often does this occur?
Simulated nodes with imperfect failure detectors
(A node detects another alive node as dead probabilistically)(p y)

P2P LAYER
Chord# provides a key/value store

SUMMARY

Chord# provides a key/value store
− scalable

− efficient: log2N hops

Quality of failure detector is crucial

Need replication to prevent data lossNeed replication to prevent data loss …

REPLICATION LAYER
improving availability

REPLICATION LAYER

Replication
Many schemes

symmetric replication− symmetric replication
− succ. list replication
− …

Must ensure data consistencyy
− need quorum-based methods

Quorum based algorithms
Enforce consistency by operating on majorities

r2r1 r3 r4 r5r2r1 r3 r4 r5

majority

Comes at the cost of increased latency

majority

− but latency can be avoided by clever replica distribution
in datacenters (cloud computing)(p g)

REPLICATION LAYERSUMMARY

availability in face of churn

quorum algorithmsquorum algorithms

But need transactional data access …

coping with concurrency:

TRANSACTION LAYER

Transaction Layer
Transactions on P2P are challenging because of …

churn− churn
changing node responsibilities

− crash stop fault model
as opposed to crash recovery in traditional DBMSas opposed to crash recovery in traditional DBMS

i f t f il d t t− imperfect failure detector
don’t know whether node crashed or slow network

Strong Data Consistency
What is it?

When a write is finished all following reads return the new− When a write is finished, all following reads return the new
value.

How to implement?
− Always read/write majority ⎣f/2⎦ + 1 of f replicas.

Latest version is always in the read or write setLatest version is always in the read or write set

Must ensure that replication degree is ≤ f− Must ensure that replication degree is ≤ f

Atomicity
What is it?

Make all or no changes!− Make all or no changes!
− Either ‘commit’ or ‘abort’.

How to implement?p
− 2PC? Blocks if the transaction manager fails.

3PC? T h l t− 3PC? Too much latency.
− We use a variant of the Paxos Commit Protocol

non-blocking: Votes of transaction participants are sent to
multiple “acceptors”

Adapted Paxos Commit
Optimistic CC with fallback

WriteWrite
− 3 rounds

non blocking (fallback)− non-blocking (fallback)

Read even faster
− reads majority of replicas

− just 1 round

succeeds when >f/2 nodes alive

Adapted Paxos Commit
replicated Items at

Optimistic CC with fallback

Write Leader

replicated
Transaction
Managers

(TMs)

Items at
Transaction
Participants

(TPs)Write
− 3 rounds

non blocking (fallback)

()

1. Step1. Step:
O(log N) hops
1. Step:
O(log N) hops− non-blocking (fallback)

Read even faster 2. Step

O(log N) hopsO(log N) hops

− reads majority of replicas

− just 1 round
3. Step

4 Step

2.-6. Step:
O(1) hops
2.-6. Step:
O(1) hops

succeeds when
>f/2 nodes alive

4. Step

5. Step
After majorityAfter majority

6. Step

After majorityAfter majority

Transactions have two purposes:
Consistency of replicas & consistency across itemsy p y

User Request Operation on replicasUser Request

BOT

Operation on replicas

BOT

− debit (a, 100);

− debit (a1, 100);

− debit (a2, 100);

− debit (a3, 100);

− deposit (b1, 100);

− deposit (b, 100); − deposit (b2, 100);

− deposit (b3, 100);

EOT EOT

TRANSACTION LAYERSUMMARY

Consistent update of items and replicas

Mitigates some of the overlay odditiesMitigates some of the overlay oddities
− node failures

asynchronicity− asynchronicity

demonstrator application:

WIKIPEDIA

Wikipedia
Top 10 Web sites
1. Yahoo!

50.000 requests/sec
− 95% are answered by squid proxies

2. Google
3. YouTube
4 Windows Live

y q p

− only 2,000 req./sec hit the backend

4. Windows Live
5. MSN
6. Myspace6. Myspace
7. Wikipedia
8. Facebook
9. Blogger.com
10. Yahoo!カテゴリ

Public Wikipedia

otherother

search
servers
search
servers

web
servers

web
servers

NFSNFS
serversservers

Our Wikipedia
Renderer

JavaJava
− Tomcat, Plog4u

Ji t f
JavaJava

Jinterface
− Interface to Erlang ErlangErlang

Key/Value StoreKey/Value Store
Chord# + Replication
+ Transactions+ Transactions

Mapping Wikipedia to Key/Value Store
Mapping

key value

page content title list of Wikitext for
all versionsall versions

backlinks title list of titles

categories category name list of titles

For each insert or modify we must

categories category name list of titles

For each insert or modify we must
− update backlinks

write transaction
− update category page(s)

write transaction

Erlang Processes

Erlang ProcessesErlang Processes
− Chord#

− load balancing

− transaction framework

− supervision (OTP)

Erlang Processes (per node)
Failure Detector supervises Chord# nodes and sends crash messages
when a failure is detected.

Configuration provides access to the configuration file and maintains
parameter changes made at runtime.pa a e e c a ges ade a u e

Key Holder stores the identifier of the node in the overlay.

Statistics Collector collects statistics information and forwards them to
statistic servers.

Chord# Node performs the main functionality of the node, e.g. successor
list and routing tablelist and routing table.

Database stores key/value pairs in each node.

A i E l T tiAccessing Erlang Transactions
from Java via Jinterface

void updatePage(string title, int oldVersion, string newText)

{{

Transaction t = new Transaction(); //new transaction

Page p = t.read(title); // read old version

if (p.currentVersion != oldVersion) // concurrent update?

t.abort();

else {

t.write(p.add(newText)); // write new text

// d t t i//update categories

foreach(Category c in p)

t write(t read(c name) add(title));t.write(t.read(c.name).add(title));

t.commit();

}}

}

Performance on Linux Cluster
test results with load generator

throughput with increasing access rate over time CPU load with increasing access rate over time

1500 trans./sec on 10 CPUs
2500 trans./sec on 16 CPUs (64 cores) and 128 DHT nodes

Implementation
11,000 lines of Erlang code

2 700 for transactions− 2,700 for transactions
− 1,300 for Wikipedia

7 000 f Ch d# d i f− 7,000 for Chord# and infrastructure

Distributed Erlang
currently has weak security and limited scalability− currently has weak security and limited scalability
⇒ we implemented own transport layer on top of TCP

Java for rendering and user interfaceg

SUMMARY

Summary
P2P as new paradigm for Web 2.0 hosting

we support consistent distributed write operations− we support consistent, distributed write operations.

Numerous applications:
− Internet databases transactional online-servicesInternet databases, transactional online services, …

Tradeoff: High availability vs data consistencyTradeoff: High availability vs. data consistency

Team
Thorsten Schütt

Florian SchintkeFlorian Schintke

Monika Moser

Stefan Plantikow

Alexander Reinefeld

Nico Kruber

Christian von ProlliusChristian von Prollius

Seif Haridi (SICS)

Ali Ghodsi (SICS)

Tallat Shafaat (SICS)()

Publications
Chord# Talks / DemosChord

T. Schütt, F. Schintke, A. Reinefeld.
A Structured Overlay for Multi-dimensional
Range Queries. Euro-Par, August 2007.

Talks / Demos
IEEE Scale Challenge, May 2008
1st price (live demo)

T. Schütt, F. Schintke, A. Reinefeld.
Structured Overlay without Consistent
Hashing: Empirical Results. GP2PC, May 2006.

Transactions
M. Moser, S. Haridi.
Atomic Commitment in Transactional DHTsAtomic Commitment in Transactional DHTs.
1st CoreGRID Symposium, August 2007.

T. Shafaat, M. Moser, A. Ghodsi , S. Haridi,
T S hütt A R i f ld K B d C i tT. Schütt, A. Reinefeld. Key-Based Consistency
and Availability in Structured Overlay Networks.
Infoscale, June 2008.

Wiki
S. Plantikow, A. Reinefeld, F. Schintke.
Transactions for Distributed Wikis on Structured Overlays.

SO ODSOM, October 2007.

