

CO
DECO
DECO
DE

Using Wrangler
to refactor Erlang
programs and tests

Simon Thompson, Huiqing Li
Adam Lindberg, Andreas Schumacher

University of Kent, Erlang Solutions, Ericsson

Overview

Refactoring Erlang in Wrangler

Clone detection and elimination

Implementation

Case study: SIP message manipulation

ProTest project: property-based testing

Introduction

Refactoring

Refactoring means changing the design or structure of a
program … without changing its behaviour.

RefactorModify

Soft-ware

There’s no single
correct design …

… different options for
different situations.

Maintain flexibility as
the system evolves.

Generalisation

-module (test).

-export([f/1]).

add_one ([H|T]) ->

 [H+1 | add_one(T)];

add_one ([]) -> [].

f(X) -> add_one(X).

-module (test).

-export([f/1]).

add_one (N, [H|T]) ->

 [H+N | add_one(N,T)];

add_one (N,[]) -> [].

f(X) -> add_one(1, X).

-module (test).

-export([f/1]).

add_int (N, [H|T]) ->

 [H+N | add_int(N,T)];

add_int (N,[]) -> [].

f(X) -> add_int(1, X).

Generalisation and renaming

Generalisation

-export([printList/1]).

printList([H|T]) ->

 io:format("~p\n",[H]),

 printList(T);

printList([]) -> true.

printList([1,2,3])

-export([printList/2]).

printList(F,[H|T]) ->

 F(H),

 printList(F, T);

printList(F,[]) -> true.

printList(

 fun(H) ->

 io:format("~p\n", [H])

 end,

 [1,2,3]).

Refactoring tool support

Bureaucratic and
diffuse.

Tedious and error
prone.

Semantics: scopes,
types, modules, …

Undo/redo

Enhanced creativity

Refactoring = Transformation + Condition

Transformation

Ensure change at all
those points needed.

Ensure change at only
those points needed.

Condition

Is the refactoring
applicable?

Will it preserve the
semantics of the

module? the program?

Static vs dynamic

Aim to check conditions statically.

Static analysis tools possible … but some
aspects intractable: e.g. dynamically
manufactured atoms.

Conservative vs liberal.

Compensation?

Wrangler

Refactoring tool for
Erlang

Integrated into Emacs
and Eclipse / ErlIDE.

Multiple modules

Structural, process,
macro refactorings

Duplicate code
detection …

… and elimination

Testing / refactoring

"Similar" code
identification

Property discovery

Architecture of Wrangler

Integration with ErlIDE

Tighter control
of what makes
up a project.

Potential for
adoption by
newcomers to
the Erlang
community.

Clone detection

Duplicate code considered harmful

It’s a bad smell …

• increases chance of bug propagation,
• increases size of the code,
• increases compile time, and,
• increases the cost of maintenance.

But … it’s not always a problem.

Clone detection

• The Wrangler clone detector
– relatively efficient

– no false positives

• User-guided interactive removal of clones.

• Integrated into development environments.

X+4 Y+5X+4 Y+5

What is ‘identical’ code?

variable+number

Identical if values of literals and variables
ignored, but respecting binding structure.

(X+3)+4 4+(5-(3*X))(X+3)+4 4+(5-(3*X))

What is ‘similar’ code?

X+Y

The anti-unification gives the (most specific)
common generalisation.

Detection Expression search

All instances of
expressions similar to

this expression …

… and their common
generalisation.

Default threshold:
 20 tokens.≥

All clones in a project
meeting the threshold
parameters …

… and their common
generalisations.

Default threshold:
 5 expressions and ≥

similarity of 0.8.≥

Similarity

Threshold: anti-unifier should be big
enough relative to the class members:

similarity = mini=1..n (size(AU)/size(Ei))

where AU = anti-unifier(E1, … ,En).

Can also threshold length of expression
sequence, or number of tokens, or … .

Implementation

Parse the program with modified
parser to ensure that location
information (line, column) is
included.

This ensures that can map
between different program
representations.

Bypasses the Erlang pre-
processor.

Parse the program with modified
parser to ensure that location
information (line, column) is
included.

This ensures that can map
between different program
representations.

Bypasses the Erlang pre-
processor.

Parse program

Resolve the use of identifiers to
their binding occurrences.

Use location information to
identify occurrences.

Erlang allows a variable to have
multiple binding occurrences,
e.g. in different arms of a case
expression.

Resolve the use of identifiers to
their binding occurrences.

Use location information to
identify occurrences.

Erlang allows a variable to have
multiple binding occurrences,
e.g. in different arms of a case
expression.

Annotate AST

Capture structural similarity
between expressions while
keeping a structural skeleton of
the original.

Replace certain subtrees with a
placeholder …

… but only if sensible to do this,
e.g. expressions including funs
but not conditionals, patterns,
try … catch … , receive, etc.

Capture structural similarity
between expressions while
keeping a structural skeleton of
the original.

Replace certain subtrees with a
placeholder …

… but only if sensible to do this,
e.g. expressions including funs
but not conditionals, patterns,
try … catch … , receive, etc.

Generalise AST

Example of generalised code

foo(X) ->

 ? =

 case ? of

 ? -> ?;

 ? -> ?

 end,

 ?,

 ?.

foo(X) ->

 Y =

 case X of

 one -> 12;

 Others -> 196

 end,

 X+Y,

 g(X,Y).

Pretty print generalised sub-
expression sequences and then
serialise into a single sequence.

A delimiter separates each sub-
expression sequence.

Pretty print generalised sub-
expression sequences and then
serialise into a single sequence.

A delimiter separates each sub-
expression sequence.

Serialise the AST

foo(X, Y) ->

 A = case X>Y of

 true -> Z=1,

 X + Y + Z;

 false ->

 Z = 2,

 X + Y -2

 end,

 A + 37.

A = case …

A + 37

--

Z=1

X + Y + Z

--

Z = 2

X + Y -2

Hash each expression, mapping
it to an 128 bit value, using non-
clashing hash function.

Expressions represented by
start / end positions in the
source code.

Hash values stored in indexed
table - indexes smaller than
hash values.

Hash each expression, mapping
it to an 128 bit value, using non-
clashing hash function.

Expressions represented by
start / end positions in the
source code.

Hash values stored in indexed
table - indexes smaller than
hash values.

Hash expressions

Build suffix tree

Build a
suffix tree
from the
expression
sequence.

Clones are
given by
paths that
branch.

Check a clone class for anti-
unification. Will return

• no classes,

• one class, or

• multiple sub-classes

each with the corresponding
anti-unification function.

Results depend on the threshold
parameters.

Check a clone class for anti-
unification. Will return

• no classes,

• one class, or

• multiple sub-classes

each with the corresponding
anti-unification function.

Results depend on the threshold
parameters.

Check clone classes

Example: clone candidate

S1 = "This",

S2 = " is a ",

S3 = "string",

[S1,S2,S3]

S1 = "This",

S2 = "is another ",

S3 = "String",

[S3,S2,S1]

D1 = [1],

D2 = [2],

D3 = [3],

[D1,D2,D3]

D1 = [X+1],

D2 = [5],

D3 = [6],

[D3,D2,D1]

? = ?,

? = ?,

? = ?,

[?,?,?]

Example: clone from sub-sequence

S1 = "This",

S2 = " is a ",

S3 = "string",

[S1,S2,S3]

S1 = "This",

S2 = "is another ",

S3 = "String",

[S3,S2,S1]

D1 = [1],

D2 = [2],

D3 = [3],

[D1,D2,D3]

D1 = [X+1],

D2 = [5],

D3 = [6],

[D3,D2,D1]

new_fun(NewVar_1,

 NewVar_2,

 NewVar_3) ->

 S1 = NewVar_1,

 S2 = NewVar_2,

 S3 = NewVar_3,

 {S1,S2,S3}.

Example: sub-clones

S1 = "This",

S2 = " is a ",

S3 = "string",

[S1,S2,S3]

S1 = "This",

S2 = "is another ",

S3 = "String",

[S3,S2,S1]

D1 = [1],

D2 = [2],

D3 = [3],

[D1,D2,D3]

D1 = [X+1],

D2 = [5],

D3 = [6],

[D3,D2,D1]

new_fun(NewVar_1,

 NewVar_2,

 NewVar_3) ->

 S1 = NewVar_1,

 S2 = NewVar_2,

 S3 = NewVar_3,

 [S1,S2,S3].

new_fun(NewVar_1,

 NewVar_2,

 NewVar_3) ->

 S1 = NewVar_1,

 S2 = NewVar_2,

 S3 = NewVar_3,

 [S3,S2,S1].

Clone classes are reported in
two different orders

• the size of the clone class, and

• the size of the members of the
clone.

Together with each class is the
anti-unifier, rendered as an
Erlang function definition to cut
and paste into the program.

Clone classes are reported in
two different orders

• the size of the clone class, and

• the size of the members of the
clone.

Together with each class is the
anti-unifier, rendered as an
Erlang function definition to cut
and paste into the program.

Clone class output

SIP Case Study

Why test code particularly?

Many people touch the code.

Write some tests … write more by copy,
paste and modify.

Similarly with long-standing projects, with
a large element of legacy code.

“Who you gonna call?”

Can reduce by 20% just by aggressively
removing all the clones identified …

… what results is of no value at all.

Need to call in the domain experts.

SIP case study

Session Initiation
Protocol

SIP message
manipulation allows
rewriting rules to
transform messages.

Test by smm_SUITE.erl,
2658 LOC.

Reducing the case study

1 2658 6 2218 11 2131

2 2342 7 2203 12 2097

3 2231 8 2201 13 2042

4 2217 9 2183 … …

5 2216 10 2149

Step 1

The largest clone
class has 15
members.

The suggested
function has no
parameters, so
the code is
literally repeated.

Not step 1

The largest clone
has 88 lines, and
2 parameters.

But what does it
represent?

What to call it?

Best to work
bottom up.

The general pattern

Identify a clone.

Introduce the corresponding
generalisation.

Eliminate all the clone instances.

So what’s the complication?

Step 3

23 line clone occurs;
choose to replace a
smaller clone.

Rename function
and parameters,
and reorder them.

new_fun() ->
 {FilterKey1, FilterName1, FilterState, FilterKey2,
 FilterName2} = create_filter_12(),
 ?OM_CHECK([#smmFilter{key=FilterKey1,
 filterName=FilterName1,
 filterState=FilterState,
 module=undefined}],
 ?SGC_BS, ets, lookup, [smmFilter, FilterKey1]),
 ?OM_CHECK([#smmFilter{key=FilterKey2,
 filterName=FilterName2,
 filterState=FilterState,
 module=undefined}],
 ?SGC_BS, ets, lookup, [smmFilter, FilterKey2]),
 ?OM_CHECK([#sbgFilterTable{key=FilterKey1,
 sbgFilterName=FilterName1,
 sbgFilterState=FilterState}],
 ?MP_BS, ets, lookup, [sbgFilterTable, FilterKey1]),
 ?OM_CHECK([#sbgFilterTable{key=FilterKey2,
 sbgFilterName=FilterName2,
 sbgFilterState=FilterState}],
 ?MP_BS, ets, lookup, [sbgFilterTable, FilterKey2]),
 {FilterName2, FilterKey2, FilterKey1, FilterName1,
 FilterState}.

new_fun() ->
 {FilterKey1, FilterName1, FilterState, FilterKey2,
 FilterName2} = create_filter_12(),
 ?OM_CHECK([#smmFilter{key=FilterKey1,
 filterName=FilterName1,
 filterState=FilterState,
 module=undefined}],
 ?SGC_BS, ets, lookup, [smmFilter, FilterKey1]),
 ?OM_CHECK([#smmFilter{key=FilterKey2,
 filterName=FilterName2,
 filterState=FilterState,
 module=undefined}],
 ?SGC_BS, ets, lookup, [smmFilter, FilterKey2]),
 ?OM_CHECK([#sbgFilterTable{key=FilterKey1,
 sbgFilterName=FilterName1,
 sbgFilterState=FilterState}],
 ?MP_BS, ets, lookup, [sbgFilterTable, FilterKey1]),
 ?OM_CHECK([#sbgFilterTable{key=FilterKey2,
 sbgFilterName=FilterName2,
 sbgFilterState=FilterState}],
 ?MP_BS, ets, lookup, [sbgFilterTable, FilterKey2]),
 {FilterName2, FilterKey2, FilterKey1, FilterName1,
 FilterState}.

check_filter_exists_in_sbgFilterTable(FilterKey, FilterName, FilterState) ->
 ?OM_CHECK([#sbgFilterTable{key=FilterKey,
 sbgFilterName=FilterName,
 sbgFilterState=FilterState}],
 ?MP_BS, ets, lookup, [sbgFilterTable, FilterKey]).

check_filter_exists_in_sbgFilterTable(FilterKey, FilterName, FilterState) ->
 ?OM_CHECK([#sbgFilterTable{key=FilterKey,
 sbgFilterName=FilterName,
 sbgFilterState=FilterState}],
 ?MP_BS, ets, lookup, [sbgFilterTable, FilterKey]).

Steps 4, 5

2 variants of check_filter_exists_in_sbgFilterTable …

• Check for the filter occurring uniquely in the table: call to
ets:tab2list instead of ets:lookup.

• Check a different table, replace sbgFilterTable by smmFilter.

• Don’t generalise: too many parameters, how to name?

check_filter_exists_in_sbgFilterTable(FilterKey, FilterName, FilterState) ->
 ?OM_CHECK([#sbgFilterTable{key=FilterKey,
 sbgFilterName=FilterName,
 sbgFilterState=FilterState}],
 ?MP_BS, ets, lookup, [sbgFilterTable, FilterKey]).

check_filter_exists_in_sbgFilterTable(FilterKey, FilterName, FilterState) ->
 ?OM_CHECK([#sbgFilterTable{key=FilterKey,
 sbgFilterName=FilterName,
 sbgFilterState=FilterState}],
 ?MP_BS, ets, lookup, [sbgFilterTable, FilterKey]).

Symbolic calls to deprecated code: erlang:module_loaded

 erlang:module_loaded(M) -> true | false

 code:is_loaded(M) -> {file, Loaded} | false

Define new function code_is_loaded:
code_is_loaded(BS, ModuleName, Result) ->

 ?OM_CHECK(Result, BS, erlang, module_loaded,[ModuleName]).

Remove all calls using fold against function refactoring.

Different checks: ?OM_CHECK vs ?CH_CHECK

code_is_loaded(BS, om, ModuleName, false) ->

 ?OM_CHECK(false, BS, code, is_loaded, [ModuleName]).

code_is_loaded(BS, om, ModuleName, true) ->

 ?OM_CHECK({file, atom_to_list(ModuleName)}, BS, code,

 is_loaded, [ModuleName]).

But the calls to ?OM_CHECK have disappeared at step 6 …

… a case of premature generalisation!

Need to inline code_is_loaded/3 to be able to use this …

Step 7

Step 10

‘Widows’ and
‘orphans’ in clone
identification.

Avoid passing
commands as
parameters?

Also at step 11.

new_fun(FilterName, NewVar_1) ->
 FilterKey = ?SMM_CREATE_FILTER_CHECK(FilterName),
 %%Add rulests to filter
 RuleSetNameA = "a",
 RuleSetNameB = "b",
 RuleSetNameC = "c",
 RuleSetNameD = "d",
 ... 16 lines which handle the rules sets are elided ...
 %%Remove rulesets
 NewVar_1,
{RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD, FilterKey}.

new_fun(FilterName, NewVar_1) ->
 FilterKey = ?SMM_CREATE_FILTER_CHECK(FilterName),
 %%Add rulests to filter
 RuleSetNameA = "a",
 RuleSetNameB = "b",
 RuleSetNameC = "c",
 RuleSetNameD = "d",
 ... 16 lines which handle the rules sets are elided ...
 %%Remove rulesets
 NewVar_1,
{RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD, FilterKey}.

new_fun(FilterName, FilterKey) ->
 %%Add rulests to filter
 RuleSetNameA = "a",
 RuleSetNameB = "b",
 RuleSetNameC = "c",
 RuleSetNameD = "d",
 ... 16 lines which handle the rules sets are elided ...
 %%Remove rulesets

{RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD}.

new_fun(FilterName, FilterKey) ->
 %%Add rulests to filter
 RuleSetNameA = "a",
 RuleSetNameB = "b",
 RuleSetNameC = "c",
 RuleSetNameD = "d",
 ... 16 lines which handle the rules sets are elided ...
 %%Remove rulesets

{RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD}.

Steps 14+

Similar code detection (default params):

16 clones, each duplicated once.

193 lines in total: get 145 line reduction.

Reduce similarity to 0.5 rather than the
default of 0.8: 47 clones.

Other refactorings: data etc.

Going further

Property-based testing

Property-based testing will deliver more
effective tests, more efficiently.

• Property discovery
• Test and property evolution
• Property monitoring
• Analysing concurrent systems

Property discovery in Wrangler

Find (test) code that
is similar …

… build a common
abstraction

… accumulate the
instances

… and generalise
the instances.

Example:

Test code from
Ericsson: different
media and codecs.

Generalisation to all
medium/codec
combinations.

Systems test: FSM discovery

Use +ve and -ve cases.Use FSM to model
expected behaviour.

Test random paths
through the FSM to
test system function.

Extract the FSM from
sets of existing test
cases.

Refactoring and testing

Respect test code in
EUnit, QuickCheck
and Common Test …

 … and refactor tests
along with refactoring
the code itself.

Refactor tests e.g.

• Tests into EUnit tests.
• Group EUnit tests into a
single test generator.
• Move EUnit tests into a
separate test module.
• Normalise EUnit tests.
• Extract setup and tear-
down into EUnit fixtures.

Next steps

Refine the notion of
similarity …

… to take account of
insert / delete in
command seqs.

Scaling up: look for
incremental version;
check vs. libraries …

Refactorings of tests
and properties
themselves.

Extracting FSMs from
sets of tests.

Support property
extraction from 'free'
and EUnit tests.

Conclusions

Efficient clone detection possible on
medium-medium sized projects.

This supports improved testing …

… but only with expert involvement.

There's a useful interaction between
refactoring and testing.

http://www.cs.kent.ac.uk/projects/wrangler/

	PowerPoint Presentation
	Using Wrangler to refactor Erlang programs and tests
	Overview
	Introduction
	Refactoring
	Soft-ware
	Generalisation
	Slide 8
	Refactoring tool support
	Refactoring = Transformation + Condition
	Static vs dynamic
	Wrangler
	Architecture of Wrangler
	Slide 14
	Integration with ErlIDE
	Clone detection
	Duplicate code considered harmful
	Slide 18
	What is ‘identical’ code?
	What is ‘similar’ code?
	Detection Expression search
	Similarity
	Implementation
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Example of generalised code
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Example: clone candidate
	Example: clone from sub-sequence
	Example: sub-clones
	Slide 36
	SIP Case Study
	Why test code particularly?
	“Who you gonna call?”
	SIP case study
	Reducing the case study
	Step 1
	Not step 1
	The general pattern
	Step 3
	Steps 4, 5
	Step 7
	Step 10
	Steps 14+
	Going further
	Slide 51
	Property-based testing
	Property discovery in Wrangler
	Systems test: FSM discovery
	Refactoring and testing
	Next steps
	Conclusions
	http://www.cs.kent.ac.uk/projects/wrangler/

