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● A bit of history
● 3 things missing
● 1 big mistake
● 2 good ideas
● 3 great ideas

Plan
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1986 1998 20101996 2000 2001

Erlang  

Mid life 
crisis
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1985 - 1998
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Timeline
● 1986-1989 -  Productive. 
● 1989 – 1996 – Wars
● 1996-1998 – Peace.

● 1998 – 2000 Mid life crisis 
● 2001 – 2008 Continuous 

slow growth. 
● 2008 – Upturn. 
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Early
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1985 - 1989
Timeline

- Programming POTS/LOTS/DOTS (1885)
- A Smalltalk model of POTS
- A telephony algebra (math)
- A Prolog interpretor for the telephony algebra
- I add processes to prolog
- Prolog is too powerful (backtracking)
- Deterministic prolog with processes
- “Erlang” !!! (1986)
- ...
- Compiled to JAM code (1989)
- 
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Find a better way of 
programming

1985 - “find better ways of programming telephony”
           SPOTS - LOTS
           SPOTS = SPC for POTS
           SPC = Stored Program Control (“computer controlled”)
           POTS = Plain Ordinary Telephone Service

           Write telephony in many different languages

No “plan” to make another 
programming language
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Pre history
AXE – programmed in PLEX

PLEX 
  Programming language for exchanges)   
  Proprietary
  blocks (processes) and signals
  in-service code upgrade

Eri Pascal



  12

Phoning Philosopher's

Armstrong, Elshiewy, Virding 
(1986)

Conclusion – Concurrent Logic 
programming with channel 
communication
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The Telephony Algebra - (1985)

    idle(N)   means the subscriber N is idle
    on(N)     means subscribed N in on hook
    ...

    +t(A, dial_tone) means add a dial tone to A
  
 
    process(A, f) :- on(A), idle(A), +t(A,dial-tone),
                            +d(A, []), -idle(A), +of(A)

Using this notation, POTS could be described using fifteen
rules. There was just one major problem: the notation only described
how one telephone call should proceed. How could we do this for
thousands of simultaneous calls?
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The reduction machine - (1985)
A -> B,C,D.
B ->  x,D.
D -> y.
C -> z.

A
B,C,D
x,D,C,D
D,C,D
y,C,D
C,D
z,D
D
Y
{}

A,B,C, D = nonterminals
x,y,z = terminals

To reduce X,...Y...
If X is a nonterminal replace it by it's definition
If X is a terminal execute it and then do ...Y...

We can interrupt this at any time
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Aside – term rewriting 
is tail recursive

A -> x,y,A

A
x,y,A
y,A
A
x,y,A
y,A
A
...

loop(X) ->
    ...
    loop(X).
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1988 – Interpreted Erlang 

- 4 days for a complete re-
write
- 245 reductions/sec
- semantics of language 
worked out
- Robert Virding joins the 
“team”
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The manual
1986 (or 85)
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Running a 
program
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The Prolog interpreter (1986)
version 1.06 
dated
1986-12-18

1.03 “lost in the 
mists of time”
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1989 – The need for speed

ACS- Dunder 
- “we like the language but it's too slow” - must be 40 times    
  faster

Mike Williams writes 
the emulator (in C)

Joe Armstrong writes 
the compiler

Robert Virding writes 
the libraries
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fac(0) -> 1;
fac(N) -> N * fac(N-1)

{info, fac, 1}
 {try_me_else, label1}
        {arg, 0}
        {getInt, 0}
        {pushInt, 1}
        ret
 label1: try_me_else_fail
        {arg, 0}
        dup
        {pushInt, 1}
        minus
        {callLocal, fac, 1}
        times
        ret

sys_sys.erl  18 dummy
sys_parse.erl 783 erlang parser
sys_ari_parser.erl 147 parse arithmetic expressions
sys_build.erl 272 build function call arguments
sys_match.erl  253 match function head arguments
sys_compile.erl 708 compiler main program
sys_lists.erl  85 list handling
sys_dictionary.erl  82 dictionary handler
sys_utils.erl  71 utilities
sys_asm.erl 419 assembler 
sys_tokenise.erl      413 tokeniser 
sys_parser_tools.erl  96 parser utilities
sys_load.erl 326 loader
sys_opcodes.erl 128 opcode definitions
sys_pp.erl 418 pretty printer
sys_scan.erl 252 scanner
sys_boot.erl  59 bootstrap
sys_kernel.erl   9 kernel calls
18 files    4544   

An early JAM compiler (1989)

Like the WAM with added primitives for
spawning processes and message passing
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factorial
rule(fac, 0)  -> 
   [pop,{push,1}];
rule(fac, _)  -> 
   [dup,{push,1},
    minus,
    {call,fac},
    times].
 

fac(0) -> 1;
fac(N) -> N * fac(N-1)

{info, fac, 1}
 {try_me_else, label1}
        {arg, 0}
        {getInt, 0}
        {pushInt, 1}
        ret
 label1: try_me_else_fail
        {arg, 0}
        dup
        {pushInt, 1}
        minus
        {callLocal, fac, 1}
        times
        ret
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factorial
rule(fac, 0)  -> [pop,{push,1}];
rule(fac, _)  -> [dup,{push,1},minus,{call,fac},times].

run() -> reduce0([{call,fac}], [3]).

reduce0(Code, Stack) ->
    io:format("Stack:~p Code:~p~n",[Stack,Code]),
    reduce(Code, Stack).

reduce([],[X])                          -> X;
reduce([{push,N}|Code], T)    -> reduce0(Code, [N|T]);
reduce([pop|Code], T)            -> reduce0(Code, tl(T));
reduce([dup|Code], [H|T])       -> reduce0(Code, [H,H|T]);
reduce([minus|Code], [A,B|T]) -> reduce0(Code, [B-A|T]);
reduce([times|Code], [A,B|T]) -> reduce0(Code, [A*B|T]);
reduce([{call,Func}|Code], [H|_]=Stack) -> 
    reduce0(rule(Func, H) ++ Code, Stack).
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factorial
 > fac:run(). 

Stack:[3] Code:[{call,fac}]
Stack:[3] Code:[dup,{push,1},minus,{call,fac},times]
Stack:[3,3] Code:[{push,1},minus,{call,fac},times]
Stack:[1,3,3] Code:[minus,{call,fac},times]
Stack:[2,3] Code:[{call,fac},times]
Stack:[2,3] Code:[dup,{push,1},minus,{call,fac},times,times]
Stack:[2,2,3] Code:[{push,1},minus,{call,fac},times,times]
Stack:[1,2,2,3] Code:[minus,{call,fac},times,times]
Stack:[1,2,3] Code:[{call,fac},times,times]
Stack:[1,2,3] Code:[dup,{push,1},minus,{call,fac},times,times,times]
Stack:[1,1,2,3] Code:[{push,1},minus,{call,fac},times,times,times]
Stack:[1,1,1,2,3] Code:[minus,{call,fac},times,times,times]
Stack:[0,1,2,3] Code:[{call,fac},times,times,times]
Stack:[0,1,2,3] Code:[pop,{push,1},times,times,times]
Stack:[1,2,3] Code:[{push,1},times,times,times]
Stack:[1,1,2,3] Code:[times,times,times]
Stack:[1,2,3] Code:[times,times]
Stack:[2,3] Code:[times]
Stack:[6] Code:[]

787 Kreds/
sec
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Speedups 
● Prolog Erlang Interpretor (1988) – 245 reds/sec
● Prolog JAM emulator – 35 reds/sec
● C Erlang JAM emulator (1989) – 30K reds/sec
● C Erlang BEAM emulator (2010) – 9 Mega reds/sec
● Erlang JAM emulator (2010) – 787K reds/sec
● Speedup in 21 years is 9M/245 = 36734
● N^21 = 36734 so N = 1.65 (65% / year) 
● Hardware (1.15^21) * 245 = 4.6 Kreds/sec
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1989 -  Clarity
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At the end of 1989
● Knew what the requirements were
● Could compile Erlang
● Knew the syntax
● Had an error recovery model (links, 

exceptions)
● Had a few users
● Had a course and material
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Accepted ideas
● Links/process groups (one crash=all crash)
● Mailbox semantics
● Dynamic code change
● Error recovery model

(we tried dozens)
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Rejected ideas
● Named pipes

and the pipe algebra

split/merge/join/fanout

(reappears as AMQP / FBP / ...)
● Mutable data
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- Handling a very large number of concurrent activities
- Actions to be performed at a certain point of time or 
  within certain time
- Systems distributed over several computers
- Interaction with hardware
- Very large software systems
- Complex functionality such as feature interaction
- Continuous operation over several years
- Software maintenance (reconfiguration, etc.) without 
  stopping the system
- Stringent quality and reliability requirements
- Fault tolerance both to hardware failures and 
  software errors

Requirements (1989)
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Teaching Erlang

Before powerpoint
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Middle
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By 1990 things 
were going 

so well 
that we
could

...
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Buy a train set
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 Have nice slides made
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We added new stuff
● Distribution
● OTP structure
● BEAM
● HIPE
● Type tools
● Philosophy

● Bit syntax
● OTP tools
● Documented way of 

doing things
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Concurrency Oriented Programming 
(MIT 2002)
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Mid Life Crisis
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1986 1998 20101996 2000 2001

Erlang Enthusiasm 

Mid life 
crisis
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● Banned (1998)
● Open Source (1998)
● Quit Ericsson 
● IT Boom
● Startups
● Blutail Acquired $$$ (2000)
● IT Crash
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Back at the 
farm
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OTP maintains a low profile
● “Rename the project”
● “Don't frighten the users”
● “Keep head down”
● “Do some technical stuff”
● “Hope nobody notices us”
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Mature
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Becoming mainstream
● Long time to change anything big
● More demand for 

books/documentation/consultants/teaching
● Many success stores (not just one)
● Rapid change of small things (GIT hub)
● Easier to fund
● Hey, it works !
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3 things missing
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Hashmaps

foo(<{a:X, b:Y | T }>) ->
   ...

> foo(<{c:23, a:123, b:abc}>)

Binds X=123, Y=abc T=<{c:23}>
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HOMS + introspection

> module_to_list(lists).
[{append,2,F1},{sort,1,F2}...]

> function_to_conc(F1).
“append([H|T], L) -> ...”

> function_to_abs(F1).
{function,append,2,[{clause,...}]}
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Receive a fun

F = fun({foo,X}) -> ... end

receive(Fun)



  50

1 big mistake
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We lost too much prolog

friends(A, B) :- likes(A, X),likes(B, X).

friends(L) ->
  [{A,B} || 
    {likes,A,X} <- L, {likes,B,X1} <- L, 
      X == X1}]
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2 good things
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Lightweight processes are ok

 
● Java “proved” GC
● Smalltalk “proved” messaging
● Erlang “proved” process belong to the PL

NOT the OS

“An OS is what the language designers 
forgot”
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OTP Behaviours

 
● Like Higher order functions
● Can encapsulate non functional concepts

(like fail over etc.) in a precise way
● Enforce best practise
● All large teams to work together
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3 great things
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Bit Syntax 
- Pattern matching over bits

-define(IP_VERSION, 4).
-define(IP_MIN_HDR_LEN, 5).

DgramSize = size(Dgram),
case Dgram of 
    <<?IP_VERSION:4, HLen:4, SrvcType:8, TotLen:16, 
      ID:16, Flgs:3, FragOff:13,
      TTL:8, Proto:8, HdrChkSum:16,
      SrcIP:32,
      DestIP:32, RestDgram/binary>> when HLen>=5, 
4*HLen=<DgramSize ->
        OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),
        <<Opts:OptsLen/binary,Data/binary>> = RestDgram,
    ...
end.

unpack(<<Red:5,Green:6,Blue:5>>) ->
    ...

Due to Klacke
(Claes Vikström)

(unpack Ipv4 datagram)
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Links

A B

C

A is linked to B
B is linked to C

If any process crashes an
EXIT message is sent to 
the linked processes

This idea comes from the 
“C wire” in early telephones
(ground the C wire to 
cancel the call)

Encourages “let it crash” programming
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Non defensive programming

 
● Program only the happy case
● Let some other process fix the error
● “let it crash”
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The good ideas
● Agent programming works
● Copying data is better than shared memory
● Messages are good to isolate things 
● The bit syntax is great
● Pure works “most of the time”
● Defensive programming is not necessary “let it crash” 
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The 
End
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