
 1

The
Ideas in
Erlang

Joe Armstrong

 2

● A bit of history
● 3 things missing
● 1 big mistake
● 2 good ideas
● 3 great ideas

Plan

 3

1986 1998 20101996 2000 2001

Erlang

Mid life
crisis

 4

 5

 6

1985 - 1998

 7

Timeline
● 1986-1989 - Productive.
● 1989 – 1996 – Wars
● 1996-1998 – Peace.

● 1998 – 2000 Mid life crisis
● 2001 – 2008 Continuous

slow growth.
● 2008 – Upturn.

 8

Early

 9

1985 - 1989
Timeline

- Programming POTS/LOTS/DOTS (1885)
- A Smalltalk model of POTS
- A telephony algebra (math)
- A Prolog interpretor for the telephony algebra
- I add processes to prolog
- Prolog is too powerful (backtracking)
- Deterministic prolog with processes
- “Erlang” !!! (1986)
- ...
- Compiled to JAM code (1989)
-

 10

Find a better way of
programming

1985 - “find better ways of programming telephony”
 SPOTS - LOTS
 SPOTS = SPC for POTS
 SPC = Stored Program Control (“computer controlled”)
 POTS = Plain Ordinary Telephone Service

 Write telephony in many different languages

No “plan” to make another
programming language

 11

Pre history
AXE – programmed in PLEX

PLEX
 Programming language for exchanges)
 Proprietary
 blocks (processes) and signals
 in-service code upgrade

Eri Pascal

 12

Phoning Philosopher's

Armstrong, Elshiewy, Virding
(1986)

Conclusion – Concurrent Logic
programming with channel
communication

 13

The Telephony Algebra - (1985)

 idle(N) means the subscriber N is idle
 on(N) means subscribed N in on hook
 ...

 +t(A, dial_tone) means add a dial tone to A

 process(A, f) :- on(A), idle(A), +t(A,dial-tone),
 +d(A, []), -idle(A), +of(A)

Using this notation, POTS could be described using fifteen
rules. There was just one major problem: the notation only described
how one telephone call should proceed. How could we do this for
thousands of simultaneous calls?

 14

The reduction machine - (1985)
A -> B,C,D.
B -> x,D.
D -> y.
C -> z.

A
B,C,D
x,D,C,D
D,C,D
y,C,D
C,D
z,D
D
Y
{}

A,B,C, D = nonterminals
x,y,z = terminals

To reduce X,...Y...
If X is a nonterminal replace it by it's definition
If X is a terminal execute it and then do ...Y...

We can interrupt this at any time

 15

Aside – term rewriting
is tail recursive

A -> x,y,A

A
x,y,A
y,A
A
x,y,A
y,A
A
...

loop(X) ->
 ...
 loop(X).

 16

1988 – Interpreted Erlang

- 4 days for a complete re-
write
- 245 reductions/sec
- semantics of language
worked out
- Robert Virding joins the
“team”

 17

The manual
1986 (or 85)

 18

Running a
program

 19

The Prolog interpreter (1986)
version 1.06
dated
1986-12-18

1.03 “lost in the
mists of time”

 20

1989 – The need for speed

ACS- Dunder
- “we like the language but it's too slow” - must be 40 times
 faster

Mike Williams writes
the emulator (in C)

Joe Armstrong writes
the compiler

Robert Virding writes
the libraries

 21

fac(0) -> 1;
fac(N) -> N * fac(N-1)

{info, fac, 1}
 {try_me_else, label1}
 {arg, 0}
 {getInt, 0}
 {pushInt, 1}
 ret
 label1: try_me_else_fail
 {arg, 0}
 dup
 {pushInt, 1}
 minus
 {callLocal, fac, 1}
 times
 ret

sys_sys.erl 18 dummy
sys_parse.erl 783 erlang parser
sys_ari_parser.erl 147 parse arithmetic expressions
sys_build.erl 272 build function call arguments
sys_match.erl 253 match function head arguments
sys_compile.erl 708 compiler main program
sys_lists.erl 85 list handling
sys_dictionary.erl 82 dictionary handler
sys_utils.erl 71 utilities
sys_asm.erl 419 assembler
sys_tokenise.erl 413 tokeniser
sys_parser_tools.erl 96 parser utilities
sys_load.erl 326 loader
sys_opcodes.erl 128 opcode definitions
sys_pp.erl 418 pretty printer
sys_scan.erl 252 scanner
sys_boot.erl 59 bootstrap
sys_kernel.erl 9 kernel calls
18 files 4544

An early JAM compiler (1989)

Like the WAM with added primitives for
spawning processes and message passing

 22

factorial
rule(fac, 0) ->
 [pop,{push,1}];
rule(fac, _) ->
 [dup,{push,1},
 minus,
 {call,fac},
 times].

fac(0) -> 1;
fac(N) -> N * fac(N-1)

{info, fac, 1}
 {try_me_else, label1}
 {arg, 0}
 {getInt, 0}
 {pushInt, 1}
 ret
 label1: try_me_else_fail
 {arg, 0}
 dup
 {pushInt, 1}
 minus
 {callLocal, fac, 1}
 times
 ret

 23

factorial
rule(fac, 0) -> [pop,{push,1}];
rule(fac, _) -> [dup,{push,1},minus,{call,fac},times].

run() -> reduce0([{call,fac}], [3]).

reduce0(Code, Stack) ->
 io:format("Stack:~p Code:~p~n",[Stack,Code]),
 reduce(Code, Stack).

reduce([],[X]) -> X;
reduce([{push,N}|Code], T) -> reduce0(Code, [N|T]);
reduce([pop|Code], T) -> reduce0(Code, tl(T));
reduce([dup|Code], [H|T]) -> reduce0(Code, [H,H|T]);
reduce([minus|Code], [A,B|T]) -> reduce0(Code, [B-A|T]);
reduce([times|Code], [A,B|T]) -> reduce0(Code, [A*B|T]);
reduce([{call,Func}|Code], [H|_]=Stack) ->
 reduce0(rule(Func, H) ++ Code, Stack).

 24

factorial
 > fac:run().

Stack:[3] Code:[{call,fac}]
Stack:[3] Code:[dup,{push,1},minus,{call,fac},times]
Stack:[3,3] Code:[{push,1},minus,{call,fac},times]
Stack:[1,3,3] Code:[minus,{call,fac},times]
Stack:[2,3] Code:[{call,fac},times]
Stack:[2,3] Code:[dup,{push,1},minus,{call,fac},times,times]
Stack:[2,2,3] Code:[{push,1},minus,{call,fac},times,times]
Stack:[1,2,2,3] Code:[minus,{call,fac},times,times]
Stack:[1,2,3] Code:[{call,fac},times,times]
Stack:[1,2,3] Code:[dup,{push,1},minus,{call,fac},times,times,times]
Stack:[1,1,2,3] Code:[{push,1},minus,{call,fac},times,times,times]
Stack:[1,1,1,2,3] Code:[minus,{call,fac},times,times,times]
Stack:[0,1,2,3] Code:[{call,fac},times,times,times]
Stack:[0,1,2,3] Code:[pop,{push,1},times,times,times]
Stack:[1,2,3] Code:[{push,1},times,times,times]
Stack:[1,1,2,3] Code:[times,times,times]
Stack:[1,2,3] Code:[times,times]
Stack:[2,3] Code:[times]
Stack:[6] Code:[]

787 Kreds/
sec

 25

Speedups
● Prolog Erlang Interpretor (1988) – 245 reds/sec
● Prolog JAM emulator – 35 reds/sec
● C Erlang JAM emulator (1989) – 30K reds/sec
● C Erlang BEAM emulator (2010) – 9 Mega reds/sec
● Erlang JAM emulator (2010) – 787K reds/sec
● Speedup in 21 years is 9M/245 = 36734
● N^21 = 36734 so N = 1.65 (65% / year)
● Hardware (1.15^21) * 245 = 4.6 Kreds/sec

 26

1989 - Clarity

 27

At the end of 1989
● Knew what the requirements were
● Could compile Erlang
● Knew the syntax
● Had an error recovery model (links,

exceptions)
● Had a few users
● Had a course and material

 28

Accepted ideas
● Links/process groups (one crash=all crash)
● Mailbox semantics
● Dynamic code change
● Error recovery model

(we tried dozens)

 29

Rejected ideas
● Named pipes

and the pipe algebra

split/merge/join/fanout

(reappears as AMQP / FBP / ...)
● Mutable data

 30

- Handling a very large number of concurrent activities
- Actions to be performed at a certain point of time or
 within certain time
- Systems distributed over several computers
- Interaction with hardware
- Very large software systems
- Complex functionality such as feature interaction
- Continuous operation over several years
- Software maintenance (reconfiguration, etc.) without
 stopping the system
- Stringent quality and reliability requirements
- Fault tolerance both to hardware failures and
 software errors

Requirements (1989)

 31

Teaching Erlang

Before powerpoint

 32

 33

Middle

 34

By 1990 things
were going

so well
that we
could

...

 35

Buy a train set

 36

 Have nice slides made

 37

We added new stuff
● Distribution
● OTP structure
● BEAM
● HIPE
● Type tools
● Philosophy

● Bit syntax
● OTP tools
● Documented way of

doing things

 38

Concurrency Oriented Programming
(MIT 2002)

 39

Mid Life Crisis

 40

1986 1998 20101996 2000 2001

Erlang Enthusiasm

Mid life
crisis

 41

● Banned (1998)
● Open Source (1998)
● Quit Ericsson
● IT Boom
● Startups
● Blutail Acquired $$$ (2000)
● IT Crash

 42

Back at the
farm

 43

OTP maintains a low profile
● “Rename the project”
● “Don't frighten the users”
● “Keep head down”
● “Do some technical stuff”
● “Hope nobody notices us”

 44

Mature

 45

Becoming mainstream
● Long time to change anything big
● More demand for

books/documentation/consultants/teaching
● Many success stores (not just one)
● Rapid change of small things (GIT hub)
● Easier to fund
● Hey, it works !

 46

3 things missing

 47

Hashmaps

foo(<{a:X, b:Y | T }>) ->
 ...

> foo(<{c:23, a:123, b:abc}>)

Binds X=123, Y=abc T=<{c:23}>

 48

HOMS + introspection

> module_to_list(lists).
[{append,2,F1},{sort,1,F2}...]

> function_to_conc(F1).
“append([H|T], L) -> ...”

> function_to_abs(F1).
{function,append,2,[{clause,...}]}

 49

Receive a fun

F = fun({foo,X}) -> ... end

receive(Fun)

 50

1 big mistake

 51

We lost too much prolog

friends(A, B) :- likes(A, X),likes(B, X).

friends(L) ->
 [{A,B} ||
 {likes,A,X} <- L, {likes,B,X1} <- L,
 X == X1}]

 52

2 good things

 53

Lightweight processes are ok

● Java “proved” GC
● Smalltalk “proved” messaging
● Erlang “proved” process belong to the PL

NOT the OS

“An OS is what the language designers
forgot”

 54

OTP Behaviours

● Like Higher order functions
● Can encapsulate non functional concepts

(like fail over etc.) in a precise way
● Enforce best practise
● All large teams to work together

 55

3 great things

 56

Bit Syntax
- Pattern matching over bits

-define(IP_VERSION, 4).
-define(IP_MIN_HDR_LEN, 5).

DgramSize = size(Dgram),
case Dgram of
 <<?IP_VERSION:4, HLen:4, SrvcType:8, TotLen:16,
 ID:16, Flgs:3, FragOff:13,
 TTL:8, Proto:8, HdrChkSum:16,
 SrcIP:32,
 DestIP:32, RestDgram/binary>> when HLen>=5,
4*HLen=<DgramSize ->
 OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),
 <<Opts:OptsLen/binary,Data/binary>> = RestDgram,
 ...
end.

unpack(<<Red:5,Green:6,Blue:5>>) ->
 ...

Due to Klacke
(Claes Vikström)

(unpack Ipv4 datagram)

 57

Links

A B

C

A is linked to B
B is linked to C

If any process crashes an
EXIT message is sent to
the linked processes

This idea comes from the
“C wire” in early telephones
(ground the C wire to
cancel the call)

Encourages “let it crash” programming

 58

Non defensive programming

● Program only the happy case
● Let some other process fix the error
● “let it crash”

 59

The good ideas
● Agent programming works
● Copying data is better than shared memory
● Messages are good to isolate things
● The bit syntax is great
● Pure works “most of the time”
● Defensive programming is not necessary “let it crash”

 60

The
End

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

