
The nine nines
mats.cronqvist@klarna.com

Ruminations on tools and strategies.

With boring anecdotes!

rumination

n 1: a calm lengthy intent consideration [syn:
contemplation, reflection, reflexion, musing,

thoughtfulness]
2: (of ruminants) chewing (the cud); "ruminants

have remarkable powers of rumination"
3: regurgitation of small amounts of food; seen in

some infants after feeding

this talk

�the nine nines
debugging in the telecom world
debugging Erlang

the claim

"99.9999999% reliability (9 nines) (31 ms.
year!)"

http://ll2.ai.mit.edu/talks/armstrong.pdf

“The AXD301 has achieved a NINE nines
reliability (yes, you read that right,
99.9999999%). Let’s put this in context: 5 nines
is reckoned to be good (5.2 minutes of
downtime/year). 7 nines almost unachievable …
but we did 9.”

http://www.pragprog.com/articles/erlang

http://ll2.ai.mit.edu/talks/armstrong.pdf
http://ll2.ai.mit.edu/talks/armstrong.pdf

the evidence

the reaction

"Before a power failure drained the USV the server this blog
has been running on had a uptime of about 420 days. So it had
NO downtime in a year. Does this mean 100% reliability? No."

"So obviously Erlang is not the only thing which makes an AXD
301 tick. I assume there is also a lot of clever reliability
engineering in the C code and in the hardware."

"There is no need use 99.9999999 % which ring so hollow."

http://blogs.23.nu/c0re/2007/08/

http://blogs.23.nu/c0re/2007/08/

what I remember (a.k.a. The Truth)
(I was system architect/troubleshooter)

The customer (British Telecom) claimed
nine nines service availability integrated
over about 5 node-years.
As far as I know, no one in the AXD 301
project claimed that this was normal, or
even possible.
For the record, Joe Armstrong was not part
of the AXD 301 team.

the claim is pretty bogus...

there was much more C than Erlang in the
system
there were no restarts and no upgrades
the functionality was very well defined

nevertheless...

the system was very reliable
compared to similar systems, it was
amazingly reliable

I have been unable to find any publicly
available reference to this.

An ancdote will have to do!

the Dark Side

Embedded system.
Multi-million lines of C++.
The disks were too small for core files.
100s of units deployed.

...but...
The network worked.

why was it so stable?

high quality programmers? no...
superior system architecture? no...
realistic project management? yes.

testing and development were close
highly stable infrastructure? yes.

solaris/beam/OTP
properties of the Erlang language? yes.

highly productive (small team)
no memory management
selective receive
debugging

something rotten in Denmark...

Embedded system running OTP R5.
Live in Denmark.
There was no way to log into the CPU.
There was no way to load new code.
There was no usable application debugging
tool.
You could physically connect a terminal.

The node got overloaded after 90 days.
A tech traveled there and rebooted every 90
days.

...tracing...

Wrote a one-liner...
...that ran a one-minute trace and wrote
to a file.
Sent it to the Danish tech by mail...
...who ran it by pasting it into a shell...
...before and after the reboot...
...and emailed the files to me (base-64
encoded)

...saves the day!

Wrote a comparison profiler.
Compare the average execution time for
each function, before and after the reboot.

ets:lookup/2
was 100 times slower before the reboot.

the answer

The hash function was broken for bignums.

the point...

Debuggability is a property of a system

In a distributed system, fail-stop bugs are
easy

the 3 kinds of bugs

It crashes “randomly”

It uses too much of a resource

It gives the wrong answer

strategies

Monitoring Narrowing
crashes logging context
performance real-time

logging
process →
function

wrong result contracts
(test cases)

context

polling

The Erlang VM has many info methods

erlang:memory
erlang:system_info
erlang:statistics
erlang:process_info
inet:i().

solaris perfmeter

gperf

unix top

top - 13:54:15 up 24 days, 2:59, 9 users, load average: 0.15, 0.42, 0.49
Tasks: 192 total, 5 running, 185 sleeping, 0 stopped, 2 zombie
Cpu(s): 7.0%us, 3.3%sy, 0.0%ni, 89.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 3106248k total, 2978996k used, 127252k free, 67844k buffers
Swap: 0k total, 0k used, 0k free, 2066100k cached

PID %MEM VIRT SWAP RES CODE DATA SHR nFLT nDRT S PR NI %CPU COMMAND
 8748 4.5 181m 44m 136m 1544 174m 2156 15 0 S 20 0 1 beam.smp
 2842 3.6 307m 196m 110m 44 236m 27m 0 0 R 20 0 7 firefox-bin
29380 3.0 395m 304m 91m 48 225m 30m 1095 0 S 20 0 0 amarok
24748 2.6 171m 93m 77m 31m 113m 12m 7 0 S 20 0 0 chrome

dtop

dtop:start()
--
kr@sterlett size: 4(45)M, cpu%: 0(27), procs: 39, runq: 0, 13:57:19
memory[kB]: proc 591, atom 300, bin 40, code 1905, ets 128

pid name current msgq mem cpu
<0.49.0> prfTarg prfPrc:pidinfo/2 0 31 0
<0.40.0> group:server/3 group:get_line1/3 0 11 0
<0.46.0> dtop prfHost:loop/1 0 21 0
<0.28.0> user_drv:server/2 user_drv:server_loo 0 17 0
<0.50.0> erlang:apply/2 file_io_server:serv 0 8 0
<0.51.0> erlang:apply/2 file_io_server:serv 0 8 0

Interrupts

The Erlang VM has 2 interrupt mechanisms

erlang:trace/3 (redbug)

erlang:system_monitor/2 (watchdog)

UNIX strace

STRACE(1) STRACE(1)

NAME
strace - trace system calls and signals

SYNOPSIS
...

DESCRIPTION
Strace intercepts and records the system calls which are called by a process
and the signals which are received by a process. The name of each system
call, its arguments and its return value are printed...

dbg - cons

dbg is too hard to use correctly
very tricky API
not safe

needed:
much simpler API
safer

disallow bad patterns
terminate if something bad happens

the Frankfurter
Pi = fun(P) when pid(P) -> case process_info(P, registered_name) of[] -> case process_info(P, initial_call) of {_, {proc_lib,init_p,5}}-> proc_lib:translate_initial_call(P); {_,
MFA} -> MFA; undefined ->unknown end; {_,Nam} -> Nam; undefined -> unknown end; (P) whenport(P) -> {name,N} = erlang:port_info(P,name), [Hd|_] =string:tokens
(N," "), Tl =lists:reverse(hd(string:tokens(lists:reverse(Hd),"/"))),list_to_atom(Tl); (R) when atom(R) -> R; ({R,Node}) when atom(R),Node == node() -> R; ({R, Node}) when
atom(R), atom(Node) -> {R,Node} end, Ts = fun(Nw) -> {_,{H,M,S}} =calendar:now_to_local_time(Nw), {H,M,S,element(3,Nw)} end, Munge =fun(I) -> case string:str(I,
"Return addr") of 0 -> casestring:str(I, "cp = ") of 0 -> []; _ -> [_, C|_] =string:tokens(I,"()+"), list_to_atom(C) end; _ -> case string:str(I,"erminate process normal") of 0 -> [_,
C|_] =string:tokens(I,"()+"), list_to_atom(C); _ -> [] end end end, Stack= fun(Bin) -> L = string:tokens(binary_to_list(Bin),"\n"),{stack,lists:flatten(lists:map(Munge,L))} end,
Prc = fun(all) ->all; (Pd) when pid(Pd) -> Pd; ({pid,P1,P2}) when integer(P1),integer(P2) -> c:pid(0,P1,P2); (Reg) when atom(Reg) -> case whereis(Reg) of undefined -> exit
({rdbg, no_such_process, Reg}); Pid when pid(Pid) -> Pid end end, MsF = fun(stack, [{Head,Cond,Body}])-> [{Head,Cond,[{message,{process_dump}}|Body]}]; (return,
[{Head,Cond,Body}]) -> [{Head,Cond, [{return_trace}|Body]}]; (Head,[{_,Cond,Body}]) when tuple(Head)-> [{Head,Cond,Body}]; (X,_) ->exit({rdbg,bad_match_spec,X})
end, Ms = fun(Mss) -> lists:foldl(MsF,[{'_',[],[]}], Mss) end, ChkTP = fun({M,F}) when atom(M), atom(F),M/='_', F/='_' -> {{M,F,'_'},[],[global]}; ({M,F,MS}) when atom
(M),atom(F), M/='_', F/='_' -> {{M,F,'_'},Ms(MS),[global]};({M,F,MS,local}) when atom(M), atom(F), M/='_', F/='_' ->{{M,F,'_'},Ms(MS), [local]}; ({M,F,MS,global})
when atom(M), atom(F),M/='_', F/='_' -> {{M,F,'_'},Ms(MS),[global]}; (X) ->exit({rdbg,unrec_trace_pattern,X}) end, ChkTPs = fun(TPs) when list(TPs) -> lists:map(ChkTP,
TPs); (TP) -> [ChkTP(TP)] end, SetTPs =fun({MFA,MS,Fs}) -> erlang:trace_pattern(MFA,MS,Fs) end, DoInitFun =fun(Time) -> erlang:register(rdbg, self()),erlang:
start_timer(Time,self(), {die}),erlang:trace_pattern({'_','_','_'}, false,[local]),erlang:trace_pattern({'_','_','_'},false,[global]) end, InitFun =fun(Time,all,send) -> exit({rdbg,
too_many_processes}); (Time,all,'receive') -> exit({rdbg,too_many_processes}); (Time,P,send) -> DoInitFun(Time), erlang:trace(Prc(P),true,[send,timestamp]); (Time,
P,'receive') ->DoInitFun(Time), erlang:trace(Prc(P),true, ['receive', timestamp]);(Time,P,TPs) -> CTPs = ChkTPs(TPs), DoInitFun(Time),erlang:trace(Prc(P),true, [call,
timestamp]), lists:foreach(SetTPs,CTPs) end, LoopFun = fun(G,N,Out) when N < 1 -> erlang:trace(all, false,[call,send,'receive']), erlang:trace_pattern({'_','_','_'},false,
[local]), erlang:trace_pattern({'_','_','_'},f alse,[global]), io:fwrite("**rdbg, ~w msgs **~n", [length(Out)]), io:fwrite("~p~n", [lists:reverse(Out)]), io:fwrite
("~p~n", process_info(self(), message_queue_len)]); (G,Cnt,Out) -> case process_info(self(),message_queue_len) of {_,N} when N > 100 -exit({rdbg,msg_queue, N}); _ -> ok
end, receive {timeout,_,{die}} ->G(G,0,Out); {trace_ts,Pid,send,Msg,To,TS} ->G(G,Cnt-1,[{send,Ts(TS), Pi(To),Msg}|Out]); {trace_ts,Pid,'receive',Msg,TS} ->G(G,Cnt-1,
[{'receive',Ts(TS),Msg}|Out]); {trace_ts,Pid,return_from, MFA,V,TS} ->G(G,Cnt-1,[{return,MFA,V}|Out]); {trace_ts,Pid,call,MFA,B,TS} whenbinary(B) -> G(G,Cnt-1,[{Pi
(Pid),Ts(TS), {Stack(B),MFA}}|Out]);{trace_ts,Pid,call,MFA,TS} -> G(G,Cnt-1,[{Pi(Pid),Ts(TS),MFA}|Out])end end, Rdbg = fun(Time,Msgs,Proc, Trc) when integer
(Time),integer(Msgs) -> Start = fun() ->InitFun(Time,Proc,Trc), LoopFun(LoopFun,Msgs,[]) end, erlang:spawn_link(Start) end.

redbug

redbug:start("erlang:now->stack").

09:03:49 <{erlang,apply,2}> {erlang,now,[]}
 {shell,eval_loop,3}
 {shell,eval_exprs,6}
 {shell,exprs,6}

redbug - safety

Safety comes from
turns off if

reach timeout
reach number of trace message limit
trace messages are too large
trace messages coming in too fast

disallows potentially dangerous traces

redbug trace patterns

redbug:start("ets:lookup").

redbug:start("ets:lookup(_,foo)").

redbug:start("ets:lookup(_,X)when X==foo").

09:46:22 <{erlang,apply,2}> {ets,lookup,[inet_db,foo]}

redbug - stack

redbug:start("ets:lookup(_,foo)-> stack").

09:48:03 <{erlang,apply,2}> {ets,lookup,[inet_db,foo]}
 {shell,eval_loop,3}
 {shell,eval_exprs,6}
 {shell,exprs,6}

redbug - return

redbug:start("ets:lookup->return").

09:48:35 <dead> {ets,lookup,[foo,bla]}
09:48:35 <dead> {ets,lookup,2} -> {error,badarg}

redbug opts
time (15000) stop trace after this many ms
msgs (10) stop trace after this many msgs
proc (all) (list of) Erlang process(es)
targ (node()) node to trace on

print_file (standard_io) print to this file
file (none) use a trc file

conclusions

�reliability is easier in Erlang than in C++
...but not by any means automatic
to get high reliability you need testing
...and debugging
debuggability is a core strength of Erlang
...especially call tracing

eper.googlecode.com/

