Riak Search @

A Full-Text Search

and Indexing Engine

based on Riak ba ShO

Erlang Factory - London - June 2010

Basho Technologies

Rusty Klophaus - @rklophaus

Why did we build 1t/

What are the major goals!

How does it work!

Part One
VWhy did we buila

Riak Search!?

Riak 1S

a scalable, highly-available, networked,

open-source key/value store.

sriak

Writing to a Key/Value Store

Writing to a Key/Value Store

Querying a Key/Value Store

Querying Riak via LinkWWalking

|
K‘bﬂ + Instvuctons

OEJQQKs)

Querying Riak via Map/Reduce

|
‘ng(s) +\JS FuncHons

Key/Value Stores

ke

Key-Based Queries

Query by Secondary Index

where Cﬂ"'zgoﬂj = "Shoes

WTEIP Im a
KV store)

™| A\)€
PLASA

Full-Text Query

|
"Converse AND Shoes”

These kinds of queries

need an Index.

Market Opportunity!

Part Two

VWhat are the major

ooals of Riak Search!

An application built on Riak.

e

Wp‘iao\ﬁon

Hrm... | need an index with more features.

=

1k

Lucene

should do the trick...

e

A

" Lucene

J

..shard to add more storage capacity...

]

Your

APPhoo\'Hor\

|

..replicate to add more throughput.

[

/ /@‘:“"MQ’I LucMQ/I L-ucen

Your

*‘\PF‘M\ Fion Luc&l\@j[LucMQ/I L-ucene
0

\ \ "““’”‘Q’I Lucu\Q/:(: Lucen

\.

..replicate to add more throughput.

[

/ /C\l:uou\e,j[LucMQ/I: Lucen

Your

*‘\PP‘iw\ Fion ‘/uCJU\Q/I LucMQ/I L-ucene
0

\ \ "“"MQ’I Lucu\Q/:(: Lucen

\.

Operations nightmare!

What do we really want!

/ Riak-ified

On
o \\ L-ucene

What do we really want!

|

ou
lcato \\ Searvch

Functionality? Be like Lucene (and more).

* Lucene Syntax
* Leverages Java Lucene Analyzers
* Solr Endpoints

* Integration via Riak Post-Commit Hook (Index)

* Integration via Riak Map/Reduce (Query)

e Near-Realtime

e Schema-less

Operations! Be like Riak.

* No special nodes
* Add nodes, get more compute and storage
* Automatically load balance

* Replicas for durability and performance

* Index and query In parallel

* Swappable storage backends

Part Three

How do we do It/

A Gentle Introduction to

Document Indexing

The Inverted Index

Document Inverded Index

#‘ Every dog has
his day.

The Inverted Index

'DocuMM*"s

#

#2

Every dog has
his day.

The dog's bark
1s worse than
his bite.

Let the cat out
of the bag.

It's raining
cats and dogs.

Combined Inverted Index

and, 4
bag, 3
bark, 2
bite, 2
cat,
cat,
davy,
dog,
dog,
dog,

At Query Time...

"o\og AND cat’

AND

N\

At Query Time...

AND

/N

dog

!

At Query Time...

!

AND

(Merge Intersection)

At Query Time...

Result: 1, 2, 3, 4

:

(Merge Union)

Complex Behavior from Simple Structures

{'predicate':"OR"} {'predicate'."OR"}

{'field":'default’, 'term':"ant"}

{'field":"default’,'term":'bee"}

{'predicate':'AND"} {'predicate’:'OR"} {'query_id":'query,edaabbbf-ca3a-4

{'predicate"."OR"}

{'feld":'default',‘term":'elephant'}

{'predicate':'OR"}

{'field".'default’ 'term':"januaryjones'}

{'Meld"'default’,'term"."narry'}

{'field':"default’,'term':'chomp"} o emit

{field' 'default’ term":'handy} =Mt o) ipredicate’:'OR')

emit
emit {'field"'default’ 'term"."lols"} /
emit ' {'field":'default’ 'term':'nappy"’} emit
{'predicate':"OR'}

{'field"."default','term':'apply'}

{'field":"default’ "term''apple'}

{'field":'default’,'term":'ample"}

{'field".'default’ 'term':"appleby'}

{'field':"default’,'term':'sample"}

Storage Approaches..

Riak Search uses

Consistent Hashing

to store data on

Partitions

Introduction to Consistent Hashing and Partrtions

Partitions = 10
Number of Nodes = 5
Partitions per Node =

Replicas (Nval) = 2

Introduction to Consistent Hashing and Partrtions

Object

Document Partrtioning

VS.

lerm Partitioning

..and the
Resulting [radeofts

Document Partitioning @ Index Time

#‘ Every dog has

his day.

Document Partitioning @ Query Time

"o\og R cat'

Term Partitioning @ Index Time

#‘ Every dog has
his day.

Term Partitioning @ Index Time

Term Partitioning @ Query Time

"o\og R cat'

Tradeoffs...

Document Po\\("'i'l'ior\ir\g

Torm Parditioning

+ Lower Latency Queries
- Lower Throughput
- Lots of Disk Seeks

- Higher Latency Queries
+ Higher Throughput

- Hotspots in Ring
(the "Obama" problem)

Riak Search: Term Partitioning

Term-partitioning is the most viable approach for our beta
clients’ needs: high throughput on Really Big Datasets.

Optimizations:
* [erm splitting to reduce hot spots
* Bloom filters & caching to save query-time bandwidth
* Batching to save query-time & index-time bandwidth

Support for erther approach eventually.

Diving Deeper:

The Litecycle of a Query

Parse the Query

The Query

meeting AND (face OR phone)

The Query as an trlang Term (Parse w/ Leex and Yecc)

[{land, |
{term, "meeting",[]},
{lor, [
{term,'"face",[]},
{term, "phone", []}

]}

The Query as a Graph
#land

/" N\

$term ¥lor

/ I ™

"meeting" #term #term

' \

"phone" "face"

Plan the Query

System Catalog

[[Calalea [ol
[Ca ' o\‘og
Cat

A Cﬂ‘l’é\‘og
\ /

System Catalog

Term Weight
TermID &
File Offset

Consult the System Catalog for Term/Node Weights
#land

/" N\

$term ¥lor

/ I ™

"meeting" #term #term

' \

23 @ node B "phone" "face"

17 @ node A 13 @ node C

Use Term Weights to Plan the Query

#land

/" N\

$term #lor

/ N

"meeting" #term #term

' \

23 @ node B ‘ohone" "face"

17 @ node A 13 @ node C

Use Term Weights to Plan the Query

#land

N

$term #lor

/ N

"meeting" #term #term

' \

23 @ node B "phone" "face"

17 @ node A 13 @ node C

Use Term Weights to Plan the Query
#node(@B

\

#land

Y - -
$term #node(@A

4 \/
"meeting" #lOr

A -

$term term
23 @ node B ‘ ‘

"phone" "face"

17 @ node A 13 @ node C

The Node-Assigned Query as an Erlang Term

[{node,
{land, |
{node,
{lor, [
{term, {"email", "body", "face"}, [
{node weight, 'node c@127.0.0.1', 13}
1},
{term, {"email", "body", "phone"}, [
{node weight, 'node a@127.0.0.1', 17}
1}
1},
'node a@127.0.0.1"
},
{term, {"email",'"body", "meeting"}, |
{node weight, 'node b@127.0.0.1', 23}
1}

1},
'node b@127.0.0.1"

Execute the Query

Spawn the Query Processes

#node(@B

\

#land

<~ T\

term #node(RA

\ \

"meeting" #lor

PN

#term $term

v \

"phone" "face"

Spawn the Query Processes

#node(@B

\

#land

<~ "\

$term #node(@A

\ \

"meeting" #lor

<~ "\

#term term

v \

"phone" "face"

Spawn the Query Processes

#node(@B

V

#land

<~ "\

$term #node(@A

\ \

"meeting" #lor

<~ "\

#term term

v \

"phone" "face"

Spawn the Query Processes

#node(@B

\

#land

) g

term #node(RA

\ \

"meeting" #lor

<~ "\

#term term

v \

"phone" "face"

Spawn the Query Processes

#node(@B

\

#land

<~ T\

term #node(RA

\ \

"meeting" #lor

~ "\

#term term

v \

"phone" "face"

Spawn the Query Processes & Stream the Results

#node(@B

\

#land

N\

term #node(RA

\

"meeting" #lor

~~ ™\

#term $term

4 \

"phone" "face"

Spawn the Query Processes & Stream the Results

#node(@B

\

#land

N\

term #node(RA

\

"meeting" #lor

PN

#term $term

4 \

"phone" "face"

Spawn the Query Processes & Stream the Results

#node(@B
#land
#term #node(@A
"meeting" #lor
#term

"PhOne 1A

Terminate VWhen Finished

#node(@B

*

#land

7~

$term #node(A

¥ ¥

'disconnect' #lor

AN

#term term

} }

'disconnect' 'disconnect'

Message Format

The Message Format

Message ::
{results, [Result]} |
{results, disconnect}

Result
{DocID, Properties}

DocID
term ()

Properties :.:
proplist()

The Message Format

{results, |
{375, [1},
{961, [{color, "red"}]},
{155, [{pos, [1,2,5]}]}

Yay for Erlang!

* Clean lines between load balancing and logic, single-
and multi-node look the same

* tasy to create new operators, rapid development of
experimental features

* Linked processes make cleanup a breeze

* Significant code reduction over early Java prototypes

Part Four

Review

Riak Search turns this...

|
"Converse AND Shoes”

WTEIP Im a
KV store)

=) N7\ K4
| S\ Nt

..Into this...

|
"Converse AND Shoes”

..Into this...

|
"Converse AND Shoes”

‘Kegs oY ObJu*l's

.while keeping operations easy.

|

ou
o \\ Searvch

Thanks! Questions?

' Search Team:

John Muellerlelle - @)jrecursive

Rusty Klophaus - @rklophaus

ba S ho Kevin Smith - @kevsmith

Currently working with a small set of Beta users.
Open-source release planned for Q3.

WWW.basho.com

