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Why did we build it?

What are the major goals?

How does it work?
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Part One

Why did we build

Riak Search?
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Riak is 

a scalable, highly-available, networked, 

open-source key/value store.
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Key/Value

CLIENT RIAK
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Writing to a Key/Value Store



Object

CLIENT RIAK
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Writing to a Key/Value Store



Key

Object

CLIENT RIAK

Querying a Key/Value Store
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Key + Instructions

Object(s)

CLIENT RIAK

Walk to 
Related 

Keys

Querying Riak via LinkWalking
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Key(s) + JS Functions

Computed Value(s)

CLIENT RIAK

Map

Reduce

Map

Querying Riak via Map/Reduce
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Key/Value Stores

like

Key-Based Queries
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where Category == "Shoes"

CLIENT RIAK

WTF!? I'm a
KV store!

Query by Secondary  Index
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"Converse AND Shoes"

CLIENT RIAK

This is 
getting old.

Full-Text Query
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These kinds of queries

need an Index.

*Market Opportunity!*
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Part Two

What are the major 

goals of Riak Search?
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Your 
Application

Riak

An application built on Riak.
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Your 
Application

Riak
Index 

Object

Hrm... I need an index.
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Your 
Application

Riak???

Hrm... I need an index with more features.
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Your 
Application

RiakLucene

Lucene should do the trick...
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Your 
Application

Lucene Lucene Lucene Riak

...shard to add more storage capacity...
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Your 
Application

Lucene Lucene Lucene

Lucene Lucene Lucene

Lucene Lucene Lucene

Riak

...replicate to add more throughput.
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Your 
Application

Lucene Lucene Lucene

Lucene Lucene Lucene

Lucene Lucene Lucene

Riak

...replicate to add more throughput.
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Operations nightmare!



Your 
Application

Riak-ified
Lucene

Riak

What do we really want?
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Your 
Application

Riak
Search

Riak

What do we really want?
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Functionality? Be like Lucene (and more).

• Lucene Syntax 

• Leverages Java Lucene Analyzers

• Solr Endpoints

• Integration via Riak Post-Commit Hook (Index)

• Integration via Riak Map/Reduce (Query)

• Near-Realtime

• Schema-less
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Operations? Be like Riak.

• No special nodes

• Add nodes, get more compute and storage

• Automatically load balance

• Replicas for durability and performance

• Index and query in parallel

• Swappable storage backends
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Part Three

How do we do it?
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A Gentle Introduction to

Document Indexing
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Every dog has 
his day.#1

day, 1

dog, 1

every, 1

has, 1

his, 1

Inverted IndexDocument

The Inverted Index
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The dog's bark 
is worse than 
his bite.

Every dog has 
his day.

Let the cat out 
of the bag.

It's raining 
cats and dogs.

#1

#2

#3

#4

Combined Inverted IndexDocuments

and, 4

bag, 3

bark, 2

bite, 2

cat, 3

cat, 4

day, 1

dog, 1

dog, 2

dog, 4

every, 1

has, 1

...

The Inverted Index
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"dog AND cat"

AND

dog cat

At Query Time...
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AND

dog cat

dog, 1

dog, 2

dog, 4

cat, 3

cat, 4

At Query Time...
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AND
(Merge Intersection)

1

2

4

3

4

Result: 4

At Query Time...
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OR
(Merge Union)

1

2

4

3

4

Result: 1, 2, 3, 4

At Query Time...

33



Complex Behavior from Simple Structures
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Storage Approaches...
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Riak Search uses 

Consistent Hashing

to store data on

Partitions
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Partitions = 10

Number of Nodes = 5

Partitions per Node = 2

Replicas (NVal) = 2

Introduction to Consistent Hashing and Partitions
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Object

Introduction to Consistent Hashing and Partitions
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Document Partitioning

vs.

Term Partitioning
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...and the 

Resulting Tradeoffs
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Every dog has 
his day.#1

Document Partitioning @ Index Time
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"dog OR cat"

Document Partitioning @ Query Time

42



Every dog has 
his day.#1

day, 1

dog, 1

every, 1

has, 1

his, 1

Term Partitioning @ Index Time
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day, 1 has, 1

every, 1his, 1

dog, 1

Term Partitioning @ Index Time
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"dog OR cat"

Term Partitioning @ Query Time
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Document Partitioning Term Partitioning

+ Lower Latency Queries

- Lower Throughput

- Lots of Disk Seeks

- Higher Latency Queries

+ Higher Throughput

- Hotspots in Ring
   (the "Obama" problem)

Tradeoffs...
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Riak Search: Term Partitioning
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Term-partitioning is the most viable approach for our beta 
clients’ needs: high throughput on Really Big Datasets.

Optimizations:

• Term splitting to reduce hot spots

• Bloom filters & caching to save query-time bandwidth

• Batching to save query-time & index-time bandwidth

Support for either approach eventually.



Diving Deeper:

The Lifecycle of a Query
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Parse the Query
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meeting AND (face OR phone)

The Query
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[{land, [

    {term,"meeting",[]}, 

    {lor,[

        {term,"face",[]},

        {term,"phone",[]}

    ]}

]}]

The Query as an Erlang Term (Parse w/ Leex and Yecc)
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#land

#term

"meeting"

#lor

#term #term

"face""phone"

The Query as a Graph
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Plan the Query
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Catalog Catalog
Catalog Catalog

Catalog Catalog
Catalog Catalog

System Catalog
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Term TermID

Term Weight

&

File Offset

System Catalog
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#land

#term

"meeting"

#lor

#term #term

"face""phone"23 @ node B

17 @ node A 13 @ node C

Consult the System Catalog for Term/Node Weights
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#land

#term

"meeting"

#lor

#term #term

"face""phone"23 @ node B

17 @ node A 13 @ node C

Use Term Weights to Plan the Query

57



#land

#term

"meeting"

#lor

#term #term

"face""phone"23 @ node B

17 @ node A 13 @ node C

Use Term Weights to Plan the Query
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#land

#term

"meeting" #lor

#term #term

"face""phone"

#node@A

#node@B

23 @ node B

17 @ node A
13 @ node C

Use Term Weights to Plan the Query
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[{node,
    {land, [
        {node, 
            {lor, [
                {term,{"email","body","face"}, [
                    {node_weight,'node_c@127.0.0.1', 13}
                ]},
                {term,{"email","body", "phone"}, [
                    {node_weight,'node_a@127.0.0.1', 17}
                ]}
            ]}, 
            'node_a@127.0.0.1'
        },
        {term, {"email","body","meeting"}, [
            {node_weight,'node_b@127.0.0.1', 23}
        ]}
    ]}, 
    'node_b@127.0.0.1'
}]

The Node-Assigned Query as an Erlang Term
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Execute the Query
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#land

#term

"meeting" #lor

#term #term

"face""phone"

#node@A

#node@B

Spawn the Query Processes
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#land

#term

"meeting" #lor

#term #term

"face""phone"

#node@A

#node@B

Spawn the Query Processes
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#land

#term

"meeting" #lor

#term #term

"face""phone"

#node@A

#node@B

Spawn the Query Processes
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#land

#term

"meeting" #lor

#term #term

"face""phone"

#node@A

#node@B

Spawn the Query Processes
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#land

#term

"meeting" #lor

#term #term

"face""phone"

#node@A

#node@B

Spawn the Query Processes
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#land

#term

"meeting" #lor

#term #term

"face""phone"

#node@A

#node@B

Spawn the Query Processes & Stream the Results
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#land

#term

"meeting" #lor

#term #term

"face""phone"

#node@A

#node@B

Spawn the Query Processes & Stream the Results
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#land

#term

"meeting" #lor

#term #term

"face""phone"

#node@A

#node@B

Spawn the Query Processes & Stream the Results
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#land

#term

'disconnect' #lor

#term #term

'disconnect''disconnect'

#node@A

#node@B

Terminate When Finished
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Message Format
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Message :: 

    {results, [Result]} |

    {results, disconnect}

Result :: 

    {DocID, Properties}

DocID :: 

    term()

Properties ::

    proplist()

The Message Format
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{results, [

    {375, []},

    {961, [{color, "red"}]},

    {155, [{pos, [1,2,5]}]}

]}

The Message Format
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Yay for Erlang!
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• Clean lines between load balancing and logic, single- 
and multi-node look the same

• Easy to create new operators, rapid development of 
experimental features

• Linked processes make cleanup a breeze

• Significant code reduction over early Java prototypes



Part Four

Review
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"Converse AND Shoes"

CLIENT RIAK

WTF!? I'm a

KV store!

Riak Search turns this...
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"Converse AND Shoes"

CLIENT RIAK

Gladly!

...into this...
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"Converse AND Shoes"

CLIENT RIAK

Keys or Objects

...into this...
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Your 
Application

Riak
Search

Riak

...while keeping operations easy.
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Thanks! Questions?

Search Team:

John Muellerleile - @jrecursive

Rusty Klophaus - @rklophaus

Kevin Smith - @kevsmith

Currently working with a small set of Beta users.

Open-source release planned for Q3.

www.basho.com


