
Getting the right module structure:

using Wrangler to fix your projects

Simon Thompson, Huiqing Li
School of Computing, University of Kent, UK

CODE
CODE
CODE

Overview

Refactoring Erlang in Wrangler

Clone detection and elimination

Case study: SIP message manipulation

Improving module structure

Introduction

Refactoring

Refactoring means changing the
design or structure of a program …
without changing its behaviour.

RefactorModify

Soft-ware
Thereʼs no single
correct design …

… different options for
different situations.

Maintain flexibility as
the system evolves.

From order to chaos …
The best
designs
decay …

• Clones

• Module
structure
"bad smells".
• …

Generalisation
-module (test).
-export([f/1]).

add_one ([H|T]) ->
 [H+1 | add_one(T)];

add_one ([]) -> [].

f(X) -> add_one(X).

-module (test).
-export([f/1]).

add_one (N, [H|T]) ->
 [H+N | add_one(N,T)];

add_one (N,[]) -> [].

f(X) -> add_one(1, X).

-module (test).
-export([f/1]).

add_int (N, [H|T]) ->
 [H+N | add_int(N,T)];

add_int (N,[]) -> [].

f(X) -> add_int(1, X).

Generalisation and renaming

Refactoring tool support
Bureaucratic and
diffuse.

Tedious and error
prone.

Semantics: scopes,
types, modules, …

Undo/redo

Enhanced creativity

Wrangler
Refactoring tool for
Erlang

Integrated into Emacs
and Eclipse / ErlIDE

Multiple modules

Structural, process,
macro refactorings

Basic refactorings

Wrangler
Duplicate code
detection …
… and elimination

Explore and improve
module structure

Testing / refactoring

Property discovery

Clone
detection
+ removal

Basic refactorings

Improve
module

structure

Architecture of Wrangler

Demo

Clone detection

Duplicate code considered harmful

Itʼs a bad smell …

• increases chance of bug propagation,
• increases size of the code,
• increases compile time, and,
• increases the cost of maintenance.

But … itʼs not always a problem.

Clone detection

• Hybrid clone detector
– relatively efficient (suffix tree)
– no false positives (AST analysis)

• User-guided interactive removal of clones.
• Integrated into development environments.

X+4 Y+5X+4 Y+5

What is ʻidenticalʼ code?

variable+number

Identical if values of literals and variables
ignored, but respecting binding structure.

(X+3)+4 4+(5-(3*X))(X+3)+4 4+(5-(3*X))

What is ʻsimilarʼ code?

X+Y

The anti-unification gives the (most specific)
common generalisation.

Detection Expression search

All instances of
expressions similar to

this expression …

… and their common
generalisation.

Default threshold:
≥ 20 tokens.

All clones in a project
meeting the threshold
parameters …

… and their common
generalisations.

Default threshold:
≥ 5 expressions and
similarity of ≥ 0.8.

Similarity

Threshold: anti-unifier should be big
enough relative to the class members:

similarity = min(,)

Can also threshold ||length of expression
sequence, or number of tokens, or … .

||(X+3)+4|| ||4+(5-(3*X))||
||X+Y|| ||X+Y||

Example: clone candidate
S1 = "This",
S2 = " is a ",
S3 = "string",
[S1,S2,S3]

S1 = "This",
S2 = "is another ",
S3 = "String",
[S3,S2,S1]

D1 = [1],
D2 = [2],
D3 = [3],
[D1,D2,D3]

D1 = [X+1],
D2 = [5],
D3 = [6],
[D3,D2,D1]

? = ?,
? = ?,
? = ?,
[?,?,?]

Example: clone from sub-sequence
S1 = "This",
S2 = " is a ",
S3 = "string",
[S1,S2,S3]

S1 = "This",
S2 = "is another ",
S3 = "String",
[S3,S2,S1]

D1 = [1],
D2 = [2],
D3 = [3],
[D1,D2,D3]

D1 = [X+1],
D2 = [5],
D3 = [6],
[D3,D2,D1]

new_fun(NewVar_1,
 NewVar_2,
 NewVar_3) ->
 S1 = NewVar_1,
 S2 = NewVar_2,
 S3 = NewVar_3,
 {S1,S2,S3}.

Example: sub-clones
S1 = "This",
S2 = " is a ",
S3 = "string",
[S1,S2,S3]

S1 = "This",
S2 = "is another ",
S3 = "String",
[S3,S2,S1]

D1 = [1],
D2 = [2],
D3 = [3],
[D1,D2,D3]

D1 = [X+1],
D2 = [5],
D3 = [6],
[D3,D2,D1]

new_fun(NewVar_1,
 NewVar_2,
 NewVar_3) ->
 S1 = NewVar_1,
 S2 = NewVar_2,
 S3 = NewVar_3,
 [S1,S2,S3].

new_fun(NewVar_1,
 NewVar_2,
 NewVar_3) ->
 S1 = NewVar_1,
 S2 = NewVar_2,
 S3 = NewVar_3,
 [S3,S2,S1].

Demo

SIP Case Study

Why test code particularly?

Many people touch the code.

Write some tests … write more by copy,
paste and modify.

Similarly with long-standing projects, with
a large element of legacy code.

“Who you gonna call?”

Can reduce by 20% just by aggressively
removing all the clones identified …

… what results is of no value at all.

Need to call in the domain experts.

SIP case study

SIP message
manipulation allows
rewriting rules to
transform messages.

Test by smm_SUITE.erl,
2658 LOC.

2658 to 2042 in twelve
steps.

Step 1

The largest clone
class has 15
members.

The suggested
function has no
parameters, so
the code is
literally repeated.

Not step 1

The largest clone
has 88 lines, and
2 parameters.

But what does it
represent?

What to call it?

Best to work
bottom up.

The general pattern

Identify a clone.

Introduce the corresponding
generalisation.

Eliminate all the clone instances.

So whatʼs the complication?

What is the complication?

Which clone to choose?
Include all the code?
How to name functions and variables?
When and how to generalise?
'Widows' and 'orphans'

Module structure inspection

Modularity "Bad Smells"

• Module structure deteriorates over time
during development.

• This can be avoided by incremental
modularity maintenance.

• Not a "push button" operation …
• … need to know both the problem domain

and the program.

Modularity Smells

• Cyclic module dependency.
• Export of functions that are meant to

be used internally.
• Module with multiple purposes.
• Very large modules.

Modularity Smell Elimination

• Key refactoring …
 Move function(s) from one module to another.

• … but, which functions to move, and to
where?

• Wrangler aims to detect modularity smells
and give refactoring suggestions.

Wrangler module graph

Wrangler cycles

Ibrowse cycles

Cyclic Module Dependency

• Reasons for cyclic module dependency:
• Mutual recursive function definition across multiple

modules.
• API Functions from different logical layers of the

system coexist in the same module.

• Some cyclic module dependencies might be
legitimate.

Some CouchDB cycles

Some terminology

• Intra-layer dependency: mutually
recursive functions across multiple
modules.

• Inter-layer dependency: mutually
recursive modules, but not mutually
recursive functions.

Resolving inter-module cycle
-module(m1).

-export([bar/0]).

bar() -> m2:blah().

-module(m2).

-export([blah/0]).

blah() -> m3:foo().

-module(m3).

-export([foo/0]).

foo() -> 1.

-module(m1).

-export([foo/0,bar/0]).

foo() -> 1.

bar() -> m2:blah().

-module(m2).

-export([blah/0]).

blah() -> m1:foo().

Resolving inter-module cycle
-module(m1).

-export([bar/0]).

foo() -> 1.

-module(m2).

-export([blah/0]).

blah() -> m1:foo().

-module(m3).

-export([bar/0]).

bar() -> m2:blah().

-module(m1).

-export([foo/0,bar/0]).

foo() -> 1.

bar() -> m2:blah().

-module(m2).

-export([blah/0]).

blah() -> m1:foo().

Cyclic Module Dependency
• For each cyclic module dependency,

Wrangler gives refactoring suggestions.
e.g.

Inter-layer cyclic module dependency: [refac_prettypr,refac_util]
Refactoring suggestion:
move_fun(refac_util, [{write_refactored_files,1},
{write_refactored_files,3}, {write_refactored_files,4}],
user_supplied_target_mod).

Identifying "API" functions

• Identify by examining call graph.
• API functions are those …

• … not used internally,
• … "close to" other API functions

• Others are seen as internal, external calls
to these are deemed improper.

Improper inter-module calls

Refactoring suggestions:

refac_move_fun:move_fun({refac_register_pid,spawn_fun
s,0},[refac_syntax_lib,refac_misc,refac_annotate_pid,
refac_slice,refac_syntax,ast_traverse_api,interface_a
pi,refac_util]).

wrangler_code_inspector:improper_inter
_module_calls("/Users/simonthompson/De
sktop/improper_module_dependency.dot",
["/Users/simonthompson/erlang/systems/
wrangler-0.8.8/src"]).

Large Modules

• A module should not contain more that 400
lines of source code according to the
Erlang programming rules.

• A very large module is likely to serve more
than one purpose or contain too many
internal functions.

Large Modules

• A large module could be partitioned into
two or more smaller modules.

Large Modules

• Partition the exports of a module into
groups using similarity metrics, each
group forms an export attribute.

• Agglomerative hierarchical algorithm
using Jaccard similarity coefficient.

• Functions specified in an export attribute
can be moved to another module together.

Demo

Going further

Property discovery in Wrangler

Find (test) code that
is similar …
… build a common
abstraction
… accumulate the
instances
… and generalise
the instances.

Example:
Test code from
Ericsson: different
media and codecs.
Generalisation to all
medium/codec
combinations.

www.cs.kent.ac.uk/projects/wrangler/
 → GettingStarted

Next steps
Refine the notion of
similarity …
… to take account of

insert / delete in
command seqs.

Scaling up: look for
incremental version;
check vs. libraries …

Refactorings of tests
and properties
themselves.

Extracting FSMs from
sets of tests.

Support property
extraction from 'free'
and EUnit tests.

Systems test: FSM discovery
Use +ve and -ve cases.Use FSM to model

expected behaviour.

Test random paths
through the FSM to
test system function.

Extract the FSM from
sets of existing test
cases.

Refactoring and testing
Respect test code in
EUnit, QuickCheck
and Common Test …

 … and refactor tests
along with refactoring
the code itself.

Refactor tests e.g.
• Tests into EUnit tests.
• Group EUnit tests into a
single test generator.
• Move EUnit tests into a
separate test module.
• Normalise EUnit tests.
• Extract setup and tear-
down into EUnit fixtures.

www.cs.kent.ac.uk/projects/wrangler/
 → GettingStarted

