
Computation Abstraction
 Going beyond programming
language glue, or what

we've missed from FP for
so long in mainstream

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

https://wave.google.com/wave/
https://wave.google.com/wave/
http://twitter.com/Sadache
http://twitter.com/Sadache

Sadek Drobi
Consultant (j2EE,.Net)

Programming Languages Hobbyist
Training: FP (F#, Scala), WOA

Architecture Editor at InfoQ.com
Maybe known for my FP interviews?
http://www.infoq.com/bycategory/

contentbycategory.action?
authorName=Sadek-Drobi&ct=2

WWW.SadekDrobi.com
sadache@twitter

Friday, June 11, 2010

http://www.infoq.com/bycategory/contentbycategory.action?authorName=Sadek-Drobi&ct=2
http://www.infoq.com/bycategory/contentbycategory.action?authorName=Sadek-Drobi&ct=2
http://www.infoq.com/bycategory/contentbycategory.action?authorName=Sadek-Drobi&ct=2
http://www.infoq.com/bycategory/contentbycategory.action?authorName=Sadek-Drobi&ct=2
http://www.infoq.com/bycategory/contentbycategory.action?authorName=Sadek-Drobi&ct=2
http://www.infoq.com/bycategory/contentbycategory.action?authorName=Sadek-Drobi&ct=2
http://www.sadekdrobi.com/
http://www.sadekdrobi.com/
http://twitter.com/Sadache
http://twitter.com/Sadache

What has been abstraction
for us in mainstream?

Hierarchical
and
Structural
OAbstruaction

Friday, June 11, 2010

What do we know about
Computation Abstraction in

mainstream?

This page is intentionally left blank.

Friday, June 11, 2010

What do we know about
Computation Abstraction in

mainstream?

Did anyone
mention
Behavioral
GOF Design
Patterns?

Friday, June 11, 2010

What is Computation
Abstraction?

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

It is all about Glue!

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

IDictionary<string,int> zipCodes= new Dictionary<string,int>{
 {"Paris",75}
 };
IDictionary<int, int> population = new Dictionary<int, int>{
 {75,100}
 };

int GetInterstingNumber(string cityName){
 var myCityCode= zipCodes[cityName];
 return (population[myCityCode] *100) / TOTAL_POPULATION ;
}

void PrintIt(string[] args){
 Console.WriteLine("Paris has "+getInterstingNumber("Paris")+
 "% of Population");
}

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

IDictionary<string,int> zipCodes= new Dictionary<string,int>{
 {"Paris",75}
 };
IDictionary<int, int> population = new Dictionary<int, int>{
 {75,100}
 };

int GetInterstingNumber(string cityName){
 var myCityCode= zipCodes[cityName];
 return (population[myCityCode] * 100) / TOTAL_POPULATION ;
}

void PrintIt(string[] args){
 Console.WriteLine(“Nancy has "+getInterstingNumber(“Nancy")+
 "% of Population");
}

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

Welcome in the REAL WORLD

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

IDictionary<string,int> zipCodes= new Dictionary<string,int>{
 {"Paris",75}
 };
IDictionary<int, int> population = new Dictionary<int, int>{
 {75,100}
 };

int GetInterstingNumber(string cityName){
 var myCityCode= zipCodes[cityName];
 return (population[myCityCode] * 100) / TOTAL_POPULATION ;
}

void PrintIt(string[] args){
 Console.WriteLine(“Nancy has "+getInterstingNumber(“Nancy")+
 "% of Populatin");
}

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

static int? GetInterstingNumber(string cityName){

 int? myCityCode=null;
 try
 {
 myCityCode = zipCodes[cityName];
 }
 catch(KeyNotFoundException e)
 {
 myCityCode = null;
 }
 try
 {
 return (population[myCityCode.Value] * 100 / TOTAL_POPULATION);
 }
 catch (KeyNotFoundException e){ return null;}

 catch(/* .Value can produce an*/ InvalidOperationException e)
 {
 return null;
 }
}

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

static int? GetInterstingNumber(string cityName){

 int? myCityCode=null;
 try
 {
 myCityCode = zipCodes[cityName];
 }
 catch(KeyNotFoundException e)
 {
 myCityCode = null;
 }
 try
 {
 return (population[myCityCode.Value] * 100 / TOTAL_POPULATION);
 }
 catch (KeyNotFoundException e){ return null;}

 catch(/* .Value can produce an*/ InvalidOperationException e)
 {
 return null;
 }
}

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

How does this default glue look like?

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

How does this only possible glue look like?

•Errors are represented through an Exception
System that by default cascades them up the
call stack

•Exceptions short circuit (interrupt
execution until they are “catched”)

•Nulls by default produce errors that
cascade up as exceptions

•These defaults can’t be overridden but can
be interrupted using some language syntax

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

What's wrong with our only possible glue?

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

Mainly two types of
problems:
one PRACTICAL and
one Conceptual

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

static int? GetInterstingNumber(string cityName){

 const int TOTAL_POPULATION=123;
 int? myCityCode=null;
 try
 {
 myCityCode = zipCodes[cityName];
 }
 catch(KeyNotFoundException e)
 {
 myCityCode = null;
 }
 try
 {
 return (population[myCityCode.Value] * 100 / TOTAL_POPULATION);
 }
 catch (KeyNotFoundException e){ return null;}

 catch(/* .Value can produce an*/ InvalidOperationException e)
 {
 return null;
 }
}

Practical Problem: Noise that disperses the
main algorithm
declaration making
readability a challenge

The special case handling
is duplicated in two
different places

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

static int? GetInterstingNumber(string cityName){

 const int TOTAL_POPULATION=123;
 int? myCityCode=null;
 try
 {
 myCityCode = zipCodes[cityName];
 }
 catch(KeyNotFoundException e)
 {
 myCityCode = null;
 }
 try
 {
 return (population[myCityCode.Value] * 100 / TOTAL_POPULATION);
 }
 catch (KeyNotFoundException e){ return null;}

 catch(/* .Value can produce an*/ InvalidOperationException e)
 {
 return null;
 }
}

Conceptual Problem:
I can’t abstract it and
say for instance: for any
null you encounter in the
algorithm stop and return
null as a final answer.

… and since I can’t
abstract the glue

logic I can’t reuse
it in another

algorithm definition
across my

application/domain

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

Some languages continue kindly trying
add more ways to approach these issues
but they still share the same problems
with the main glue

“Nancy has“ + getInterstingNumber(“Nancy")??”NA”+"% of
Population”

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

So how do we abstract “glue” or “computations”?
 or as some call it “overriding the semicolon ;”

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

We need computation abstraction tools!

Functional Languages contain naturally
our needed tools (functions, functors,
monads,…)

The good news is that some currently
mainstream (C#) and other potentially
mainstream (Scala, F#) programming
languages have them in someway too!

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

Abstracting the glue with nulls (None)
in F# would be:

let getInterestingNumber
 (cities:Map<string,int>) (population:Map<int,int>)

(cityName:string) :int Option=
 maybe{ let! zipCode= cities.TryFind cityName
 let! cityPopulation= population.TryFind zipCode
 return cityPopulation * 100 / TOTAL_POPULATION }

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

module Maybe=
 let succeed x = Some(x)
 let fail = None
 let bind p rest =
 match p with
 | None -> fail
 | Some r -> rest r
 let delay f = f()

 type MaybeBuilder() =
 member b.Return(x) = succeed x
 member b.Bind(p, rest) = bind p rest
 member b.Delay(f) = delay f
 member b.Let(p,rest) = rest p

The glue implementation with null (None)
propagation looks like:

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

What about a glue implementation that
collects errors and goes on?

let plusOneWithError ints= (Error "First Error",List.map ((+)1) ints)
let plus2WithAnotherError ints=(Error “2nd Error",List.map ((+)2) ints)
let twiceWithNoError ints= (NoError,List.map ((*)2) ints)

let answer= collectingErrors { let! l1= plusOneWithError [1;2;3]
 let! l2= plusTwoWithAnotherError l1
 let! l3= twiceWithNoError l2
 return l3 }

val final : Error * int list =
 (ErrorList [Error "First Error"; Error "Second Error"], [8; 10;
12])

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

In Scala you can Abstract
Computation too:

for{ i <- Some(1)
 val j = i +1 } yield j)

Evaluates to Some(2)

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

def map[B](f: A => B): Option[B]=
 o match{case None => None
 case Some(a) => Some f(a)}

def flatMap[B](f: A => Option[B]): Option[B]=
 o match{case None => None
 case Some(a) => f(a)}

Friday, June 11, 2010

What about C#, a current
mainstream language?

 IEnumerable<double> result=from i in Enumerable.Range(0,100)

 select 1.0/i;

Heard of LinQ of course!

googlewave.com!w+PgcakhgiA
sadache@twitter

there is an error of division by zero there!

 IEnumerable<double> result=from i in Enumerable.Range(0,100)
 .IgnoringErrors()
 select 1.0/i;

Non problem. Since we abstracted computation, we can
use a more tolerant implementation of the glue!

Friday, June 11, 2010

What about C#, a current
mainstream language?

// Create mouse drag
 var mouseDrag = from md in this.GetMouseDown()

 from mm in this.GetMouseMove()
 .Until(this.GetMouseUp())
 select mm;
// Subscribe
 var handler = mouseDrag.Subscribe(e =>

 PublishMouseDrag(e.EventArgs.Location));

Implementing asynchronous programming glue using
Computation Abstraction in the Reactive Programming
Framework:

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

In Scala Error propagating
glue without exceptions:

 def throwError(i:Int):ThrowsError[Int]=
 Error("I don't like " +i+ "!");

 for{i <- throwError(2)
 val j = i + 1} yield j)

Evaluates to Error(I don't like 2!)

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

case class ThrowsError[A] (e:Either[Error,A]){

 def map[B](f: A => B): ThrowsError[B]= ThrowsError(e.right.map(f))
 def flatMap[B](f: A => ThrowsError[B]): ThrowsError[B]=
 ThrowsError(e.right.flatMap(a=>f(a).e))
 }

Friday, June 11, 2010

Asynchronous Worflows in F#

let asynctask =
 async { let req = WebRequest.Create(url)
 let! response = req.GetResponseAsync()
 let stream = response.GetResponseStream()
 let streamreader =
 new System.IO.StreamReader(stream)
 return streamreader.ReadToEnd() }

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

What did I show so far?

Defined glue for:

– Nulls
– Errors that propagate (better exceptions)

– Custom glue that doesn’t short circuit (collectErrors)
– Events and asynchronous programming
– A lot is already available (Lists, Streams, Channels,
State, Enviorement…)

– Easily add your own (implementing map, bind(flatMap))
– Combine them!

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

Reuse and combine

Monad Transformers

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

Showed Computation
Abstraction

Functors, Applicative Functors, Monads, Comands

Still there are others!

Like Arrows for more control over your
computation:

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

Prerequisite?

– Functions
– Syntax Sugar
– Sugar-Free?
– Operator overloading for nicer syntax

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

Friday, June 11, 2010

Q?

Release Your Algorithms from plumping code

Let them Express themselves!

googlewave.com!w+PgcakhgiA
sadache@twitter

Friday, June 11, 2010

