
Simon Thompson, Clara Benac Earle!
University of Kent, Universidad Politécnica de Madrid!

ProTest goals

Integrate property-based testing into the
development life cycle:!

•  Property discovery!
•  Test and property evolution!
•  Property monitoring!
•  Analysing concurrent systems!

Property-based testing

Describe the required behaviour of a
system using logical properties … !

… or abstract state machines.!

Test the properties against random data.!

Test machine compliance by random
execution sequences.!

ProTest tools!

State Chum

PULSE

Exago
Onviso

QuickCheck

Focus for this talk !

State Chum

PULSE

Exago
Onviso

QuickCheck

Wrangler!
Interactive refactoring
tool for Erlang!

Integrated into Emacs
and Eclipse / ErlIDE!

Multiple modules!

Structural, process,
macro refactorings!

Basic refactorings!

Clone
detection  
+ removal!

Improve
module  

structure!

Refactoring and testing!

•  Clone detection and elimination in test
code!

•  Property extraction through clone detection
and FSM inference.!

•  Refactoring code and tests: frameworks.!
•  Refactoring tests in a framework. !

Refactoring and testing!

•  Clone detection and elimination in test
code!

•  Property extraction through clone detection
and FSM inference.!

•  Refactoring code and tests: frameworks.!
•  Refactoring tests in a framework. !

(X+3)+4! 4+(5-(3*X))!(X+3)+4! 4+(5-(3*X))!

What is ‘similar’ code?!

X+Y!

The anti-unification gives the (most specific)
common generalisation. !

Step 1!
The largest clone
class has 15
members.!

The suggested
function has no
parameters, so
the code is
literally repeated.!

The general pattern!

Identify a clone.!

Introduce the corresponding
generalisation. !

Eliminate all the clone instances. !

So whatʼs the complication?!

What is the complication?!

Which clone to choose?!

Include all the code?!

How to name functions and variables?!

When and how to generalise?!

'Widows' and 'orphans'!

Clone elimination and testing!

Copy and paste … many hands.!

Shorter, more comprehensible and
better structured code.!

Emphatically not “push button” … !

Need domain expert involvement.!

Refactoring and testing!

•  Clone detection and elimination in test
code!

•  Property extraction through clone detection
and FSM inference.!

•  Refactoring code and tests: frameworks.!
•  Refactoring tests in a framework. !

Property discovery in Wrangler!
Find (test) code that
is similar …!
… build a common
abstraction!
… accumulate the
instances!
… and generalise the
instances.!

Example:!
Test code from
Ericsson: different
media and codecs.!
Generalisation to all
medium/codec
combinations.!

Refactoring and testing!

•  Clone detection and elimination in test
code!

•  Property extraction through clone detection
and FSM inference.!

•  Refactoring code and tests: frameworks.!
•  Refactoring tests in a framework. !

Testing frameworks!

Extend refactorings
while observing!

•  Naming conventions!
•  Macros!
•  Callbacks !
•  Meta-programming!
•  Coding patterns!

EUnit, Common Test and
Quick Check each give a
template for writing tests
and a platform for
performing them.!

Want to refactor code
and test code in step.!

Quick Check example!

Callbacks, macros and meta-programming.!
-export(…, command/1, postcondition/3, … ,prop/0]).!

command({N}) when N<10 -> !
 frequency([{3,{call,nat_gen,next,[]}},!
 {1,{call,nat_gen,stop,[]}}]); … !

postcondition({N},{call,nat_gen,next,_},R)-> R == N; …!

prop() -> !
 ?FORALL(Commands,commands(?MODULE), !
 begin {_H,_S,Result} = run_commands(?MODULE,Commands),!
 Result == ok end).!

Quick Check example!

Callbacks, macros and meta-programming.!
-export(…, command/1, postcondition/3, … ,prop/0]).!

command({N}) when N<10 -> !
 frequency([{3,{call,nat_gen,next,[]}},!
 {1,{call,nat_gen,stop,[]}}]); … !

postcondition({N},{call,nat_gen,next,_},R)-> R == N; …!

prop() -> !
 ?FORALL(Commands,commands(?MODULE), !
 begin {_H,_S,Result} = run_commands(?MODULE,Commands),!
 Result == ok end).!

Refactoring and testing!

•  Clone detection and elimination in test
code!

•  Property extraction through clone detection
and FSM inference.!

•  Refactoring code and tests: frameworks.!
•  Refactoring tests in a framework. !

Refactoring within QuickCheck!
Property refactorings:!

Introduce local
definitions (LET) !

Merge local defini-
tions and quantifiers
(FORALL).!

[EUnit too …]!

FSM-based testing:
transform state
variable from simple
value to record.!

Stylised usage
supports robust
transformation.!

Spinoff to OTP libs.!

www.cs.kent.ac.uk/projects/wrangler/  
 → GettingStarted!

Inferring QuickCheck state
machines from Eunit test sets!

Thomas Arts, Simon Thompson!
Chalmers University, University of Kent!

Server for mobile frequencies!

Server for mobile frequencies!

-spec start([integer()]) -> pid().

-spec stop() -> ok.

-spec allocate() -> {ok,integer()} |

 {error, no_frequency}.

-spec deallocate(integer()) -> ok.

State-based system allows
allocation and de-allocation of
frequencies from an initial list,
once system is started.

Testing start/stop behaviour!

startstop_test() ->

 ?assertMatch(… ,start([])),

 ?assertMatch(ok,stop()),

 ?assertMatch(… ,start([1])),

 ?assertMatch(ok,stop()).

EUnit is a unit testing
framework for Erlang.!

Test start / stop behaviour.

Final test set!

start_twice_test_() ->

 {setup,

 fun() -> start([]) end,

 fun(_) -> stop() end,

 fun() -> ?assertException(_,_,start([])) end}.

startstop_test() ->

 ?assertMatch(… ,start([])),

 ?assertMatch(ok,stop()),

 ?assertMatch(… ,start([1])),

 ?assertMatch(ok,stop()).

stop_without_start_test() ->

 ?assertException(_,_,stop()).

Improved testing through
inductive machine inference!

Neil Walkinshaw, John Derrick!
University of Sheffield!

FSM-based testing!

Observe test executions …!

… and improve the FSM!

QuickCheck and McErlang
integration!

Clara Benac Earle, Lars-Åke Fredlund!
UPM!

State space

Execution path

Faulty part of state space

QuickCheck QuickCheck + PULSE

QuickCheck QuickCheck + PULSE

Repeat test N times – ?ALWAYS macro

QuickCheck + McErlang
optimal case

QuickCheck + McErlang
more common case

  The goal is to provide easy access to the power
of model checking to QuickCheck users!

  And to make McErlang more accessible through
QuickCheck (generators, commands)!

  We focus on the QuickCheck state machine
library eqc_statem !

  The parallel_commands is a suitable first
functionality to integrate!

QuickCheck and McErlang integration

C3

C4a C4b

C2

C1

C5a C5b

Sequential
prefix

Parallel
execution

C3

C4a

C4b

C2

C1

C5a

C5b

C3

C4a

C5a

C2

C1

C4b

C5b

Is there a linear execution “equivalent” to the parallel one?
(such that all command results are the same)

C3

C4b

C5b

C2

C1

C4a

C5a

...

Parallel commands

State machine
specification
commands

State machine
specification

parallel_commands

No errors
No errors

PULSE
w.

parallel_commands

McErlang
w.

parallel_commands

No errors

Refine model/fix bug

Refine model/fix bug Refine model/fix bug

Implementation - basic QuickCheck!

prop_testsomething() →!
 ?FORALL(PCmds, parallel_commands(?MODULE),!
 begin!
 {H,S,Res} = !
 run_parallel_commands(PCmds),!
 ?WHENFAIL(io:format(...),!
 Res == ok)!
 end).!

Implementation - PULSE!
prop_testsomething() →!
 ?FORALL(PCmds, parallel_commands(?MODULE),!
 ?PULSE(!
 [<instrumented-modules>], %Optional?!
 {H,S,Res},!
 begin!
 run_parallel_commands(PCmds)!
 end,!
 ?WHENFAIL(io:format(...),!
 Res == ok))).!

Implementation - McErlang!
prop_testsomething() →!
 ?FORALL(PCmds, parallel_commands(?MODULE),!
 ?MCERLANG(!
 [<instrumented-modules>], %Optional?!
 {H,S,Res},!
 begin!
 run_parallel_commands(PCmds)!
 end,!
 ?WHENFAIL(io:format(...),!
 Res == ok))).!

Behind the scenes!
  Some QuickCheck code compiled with

McErlang!
  A McErlang application (usable

standalone)!
  Making McErlang behave better as a

testing tool with finite resources:!
  Memory bounded tables!
  Time limit for model checking runs!

https://babel.ls.fi.upm.es/trac/McErlang/wiki/QuickCheck/McErlang

Which verification method to use?!

  How large is the state space?!
  What is the density of faults?!
  How critical is the application?!
  What resources (memory/time) do we have?!
  Is it better to generate many test cases?!
… or to run the same test case many times? !
… or explore more of its state space?!
  We want to do more experiments and compare! !

Conclusions!

  Next release of QuickCheck will likely ship
with McErlang integrated!

  Benefits to QuickCheck: finding more bugs!
  Benefits to McErlang: more users!

