
SCALING COUCHDB WITH 
BIGCOUCH

Adam Kocoloski
Cloudant

Erlang Factory SF Bay Area 2011



2

• Introductions

• Brief intro to CouchDB

• BigCouch Usage Overview

• BigCouch Internals

• Reports from the Trenches

OUTLINE



3

INTRODUCTIONS

Cloudant CTO
CouchDB Committer Since 2008

PhD physics MIT 2010

BigCouch
Putting the “C” back in CouchDB

Open Core: 2 years Development

Contact
adam@cloudant.com

kocolosk in #cloudant / #couchdb / #erlang
@kocolosk

mailto:adam@cloudant.com
mailto:adam@cloudant.com


4

COUCHDB IN A SLIDE

• Document database management system

• JSON over HTTP

• Append-only MVCC storage

• Views: Custom, persistent representations of your data
Incremental MapReduce with results persisted to disk
Fast querying by primary key (views stored in a B-tree)

• Bi-Directional Replication
Master-slave and multi-master topologies supported
Optional ‘filters’ to replicate a subset of the data
Edge devices (mobile phones, sensors, etc.)



5

WHY BIGCOUCH?
CouchDB is Awesome

...But somewhat incomplete
Cluster
Of
Untrusted
Commodity
Hardware

“CouchDB is not a distributed 
database” -J. Ellis

“Without the Clustering, it’s just 
OuchDB”



6

BIGCOUCH = HA CLUSTERED COUCH
• Horizontal Scalability

Easily add storage capacity by adding more 
servers
Computing power (views, compaction, etc.) 
scales with more servers

• No SPOF
Any node can handle any request
Individual nodes can come and go

• Transparent to the Application
All clustering operations take place “behind 
the curtain”
‘looks’ like a single server instance of Couch, 
just with more awesome
asterisks and caveats discussed later



7

GRAPHICAL REPRESENTATION

hash(blah) = E

Load Balancer

PUT http://kocolosk.cloudant.com/dbname/blah?w=2

N=3
W=2
R=2

Node 1

A B C D
Node 2B

C
D

E

N
ode 3

C

D

E

F

N
ode 4

D

E

F

G

Node 24

X
Y

Z
A

• Clustering in a ring (a la 
Dynamo)

• Any node can handle a 
request

• O(1) lookup
• Quorum system (N, R, W)
• Views distributed like 

documents
• Distributed Erlang
• Masterless

http://boorad.cloudant.com/dbname/id
http://boorad.cloudant.com/dbname/id


8

• Shopping List
3 networked computers
Usual CouchDB Dependencies
BigCouch Code

• http://github.com/cloudant/bigcouch

BUILDING YOUR FIRST CLUSTER

http://github.com/cloudant/bigcouch/blob/master/README.md
http://github.com/cloudant/bigcouch/blob/master/README.md


9

BUILDING YOUR FIRST CLUSTER

foo.example.com bar.example.com baz.example.com

Build and Start BigCouch

Pick one node and add the others to the local “nodes” DB

Make sure they all agree on the magic cookie  (rel/etc/vm.args)



10

QUORUM: IT’S YOUR FRIEND
• BigCouch databases are governed by 4 parameters

Q: Number of shards
N: Number of redundant copies of each shard
R: Read quorum constant
W: Write quorum constant
(NB: Also consider the number of nodes in a cluster)

For the next few 
examples, consider a 5 

node cluster

1

2

34

5



11

Q
• Q: The number of shards over which a DB will be spread

consistent hashing space divided into Q pieces
Specified at DB creation time
possible for more than one shard to live on a node
Documents deterministically mapped to a shard

Q=1 Q=4

1

2

34

5



12

N
• N: The number of redundant copies of each document

Choose N>1 for fault-tolerant cluster
Specified at DB creation
Each shard is copied N times
Recommend N>2

1

2

34

5

N=3



13

W
• W: The number of document copies that must be saved 

before a document is “written”
W must be less than or equal to N
W=1, maximize throughput
W=N, maximize consistency
Allow for “201” created response
Can be specified at write time

1

2

34

5

W=2
‘201 Created’



14

R
• R: The number of identical document copies that must be 

read before a read request is ok
R must be less than or equal to N
R=1, minimize latency
R=N, maximize consistency
Can be specified at query time
Inconsistencies are automatically repaired

1

2

34

5

R=2



VIEWS
• So far, so good, but what about secondary indexes?

Views are built locally on each node, for each DB shard
Mergesort at query time using exactly one copy of each shard
Run a final rereduce on each row if a the view has a reduce

• _changes feed works similarly, but has
no global ordering
Sequence numbers converted
to strings to encode more
information

15

1

2

34

5



16

BIGCOUCH STACK

CHTTPD

Fabric

Rexi Mem3

Embedded CouchDB
Mochiweb, Spidermonkey, etc.



17

MEM3

CHTTPD

Fabric

Rexi Mem3

Embedded CouchDB

• Maintains the shard mapping for each clustered database in a 
node-local CouchDB database

• Changes in the node registration and shard mapping databases are 
automatically replicated to all cluster nodes

• Shard copies are eagerly synchronized



18

REXI

CHTTPD

Fabric

Rexi Mem3

Embedded CouchDB

• BigCouch makes a large number of parallel RPCs

• Erlang RPC library not designed for heavy parallelism
promiscuous spawning of processes
responses directed back through single process on remote node
requests block until remote ‘rex’ process is monitored

• Rexi removes some of the safeguards
in exchange for lower latencies
no middlemen on the local node 
remote process responds directly to client
remote process monitoring occurs
out-of-band



19

FABRIC / CHTTPD

CHTTPD

Fabric

Rexi Mem3

Embedded CouchDB

• Fabric
OTP library application (no processes) responsible for clustered 
versions of CouchDB core API calls
Quorum logic, view merging, etc.
Provides a clean Erlang interface to BigCouch
No HTTP awareness

• Chttpd
Cut-n-paste of couch_httpd, but using
fabric for all data access



REPORTS FROM THE TRENCHES

• code_change and supervision trees

20

• remote execution of fun expressions == recipe for badfun

• blocking !



21

http://github.com/cloudant/bigcouch

http://github.com/cloudant/bigcouch
http://github.com/cloudant/bigcouch

