
Getting the right module structure:
finding and fixing problems

in your projects!

Simon Thompson, Huiqing Li!
!
 !

School of Computing, University of Kent, UK!

Overview!

Refactoring Erlang in Wrangler!
Clone detection and elimination!

Case study: SIP message manipulation!
Improving module structure!

Introduction!

Refactoring!

Refactoring means changing the
design or structure of a program …
without changing its behaviour.!

Refactor!Modify!

Soft-ware!
There’s no single
correct design … !
!

… different options for
different situations.!

!

Maintain flexibility as
the system evolves.!

From order to chaos …!
The best
designs
decay …!
!

•  Clones!

•  Module
structure
"bad smells".!
•  …!

Generalisation!
-module (test).!
-export([f/1]).!
 !
add_one ([H|T]) ->!
 [H+1 | add_one(T)]; !
!
add_one ([]) -> []. !
!

f(X) -> add_one(X).!
!

-module (test).!
-export([f/1]).!
 !
add_one (N, [H|T]) ->!
 [H+N | add_one(N,T)];!
!
add_one (N,[]) -> []. !
!
f(X) -> add_one(1, X).!

 !

-module (test).!
-export([f/1]).!
 !
add_int (N, [H|T]) ->!
 [H+N | add_int(N,T)];!
!
add_int (N,[]) -> []. !
!
f(X) -> add_int(1, X). !

Generalisation and renaming!

Refactoring tool support!
Bureaucratic and
diffuse.!
!

Tedious and error
prone.!
!

Semantics: scopes,
types, modules, …!
!

Undo/redo!
!

Enhanced creativity!

Wrangler!

Basic refactorings: structural, macro,
process and test-framework related!

Clone detection  
+ removal!

Improve module  
structure!

Design philosophy!

Automate the simple actions …!
!

 …as by hand they are tedious and error-prone.!
!

Decision support for more complex tasks …!
!

 … don’t try to make them “push button”.!
!

Clone detection experience validates this.!

Demo!

Clone detection!

Duplicate code considered harmful!

Itʼs a bad smell …!
!

•  increases chance of bug propagation,!
•  increases size of the code,!
•  increases compile time, and,!
•  increases the cost of maintenance. !
!

But … itʼs not always a problem.!

Clone detection!

•  Hybrid clone detector !
–  relatively efficient (suffix tree)!
–  no false positives (AST analysis)!

•  User-guided interactive removal of clones.!
•  Integrated into development environments.!

(X+3)+4! 4+(5-(3*X))!(X+3)+4! 4+(5-(3*X))!

What is ‘similar’ code?!

X+Y!

The anti-unification gives the (most specific)
common generalisation. !

Detection Expression search!
All instances of

expressions similar to
this expression …!

!

… and their common
generalisation.!

!

Default threshold:
≥ 20 tokens.!

!

All clones in a project
meeting the threshold
parameters …!
!

… and their common
generalisations.!
 !

Default threshold:
≥ 5 expressions and
similarity of ≥ 0.8.!

Similarity!

Threshold: anti-unifier should be big
enough relative to the class members:!
!

!

similarity = min(,)!
!
!

Can also threshold number of expressions,
number of tokens, number of new variables
or … .!

||(X+3)+4||! ||4+(5-(3*X))||!
||X+Y||! ||X+Y||!

Demo!

SIP Case Study!

Why test code particularly?!

Many people touch the code.!
!

Write some tests … write more by copy,
paste and modify.!
!

Similarly with long-standing projects, with
a large element of legacy code.!
!

“Who you gonna call?”!
!

!Can reduce by 20% just by aggressively
removing all the clones identified …!
!

… what results is of no value at all.!
!

Need to call in the domain experts.!

SIP case study!

SIP message
manipulation allows
rewriting rules to
transform messages. !
!

Test smm_SUITE.erl,
2658 LOC. !
!

Step 1!
The largest clone
class has 15
members.!
!

The suggested
function has no
parameters, so
the code is
literally repeated.!

Not step 1!
The largest clone
has 88 lines, and
2 parameters.!
!

But what does it
represent?!
!

What to call it?!

!

Best to work
bottom up.!

The general pattern!

Identify a clone.!
!

Introduce the corresponding
generalisation. !
!

Eliminate all the clone instances. !
!

So what’s the complication?!

What is the complication?!

Which clone to choose?!
Include all the code?!
How to name functions and variables?!
When and how to generalise?!
'Widows' and 'orphans'!

Module structure inspection!

Maintaining modularity!

Cyclic module
dependencies.!

!

Export of functions that
are “really” internal.!

!

Modules with multiple
purposes.!

!

Very large modules.!

Modularity tends to
deteriorate over time.!

!

Repair with incremental
modularity maintenance.!

!

Four modularity “bad
smells”.!

Refactoring: move functions!

Move a group of functions from !
one module to another.!

!

Which functions to move? Move to where? How?!
Wrangler provides: !
1.  ! Modularity smell detection !
2.  ! Refactoring suggestions !
3.  ! Refactoring!

“Dogfooding” Wrangler!
!

Case study of Wrangler-0.8.7!
!

56 Erlang modules, 40 kloc (inc. comments).!
!

• Improper dependencies: sharing
implementation between refactorings.!

• Cyclic dependencies: need to split modules.!

• Multiple goals: refac_syntax_lib 7 clusters.!

Wrangler module graph!

Cyclic Module Dependency!

•  Reasons for cyclic module dependency:!
•  Mutual recursive function definition across multiple

modules.!
•  API Functions from different logical layers of the

system coexist in the same module. !

•  Some cyclic module dependencies might be
legitimate.!

Ibrowse cycles!

Some CouchDB cycles!

Some terminology!

•  Intra-layer dependency: mutually
recursive functions across multiple
modules.!

•  Inter-layer dependency: mutually
recursive modules, but not mutually
recursive functions.!

Wrangler cycles!

Inter-layer cyclic module dependency found:
 [refac_prettypr, refac_util, refac_prettypr]

Refactoring suggestion:
move_fun(refac_util, [{refac_util,write_refactored_files,1},
 {refac_util,write_refactored_files,3},
 {refac_util,write_refactored_files,4}],
 user_supplied_target_mod).

refac_util

Inter-layer dependency!
refac_prettypr

concat_toks/1
get_toks/1
get_range/1

print_ast/2

refac_util

Intra-layer dependency!

refac_type_annotation

full_buTP/3
parse_annotate_file/3

rewrite/2
stop_tdTP/3

test_framework_used/1

type_ann_ast/2

Identifying "API" functions!

•  Identify by examining call graph.!
•  API functions are those …!

•  … not used internally,!
•  … "close to" other API functions.!

•  Others are seen as internal, external calls
to these are deemed improper.!

refac_register_pid

Improper dependency!

refac_add_a_tag refac_rename_process refac_annotate_pid

spawn_funs/0 is_spawn_app/0 evaluate_expr/5

refac_syntax_lib.erl!

Report on multi-goal
modules: 12/56.!
!

Agglomerative
hierarchical algorithm.!
!

Functions represented
by feature lists … fed
into Jaccard metric. !

Module: refac_syntax_lib
Cluster 1, Indegree:25, OutDegree:1,
[{map,2}, {map_subtrees,2},
 {mapfold,3},{mapfold_subtrees,3},
 {fold,3}, {fold_subtrees,3}]

Cluster 2, Indegree:0, OutDegree:0,
[{foldl_listlist,3},{mapfoldl_listlist,3}]

Cluster 3, Indegree:0, OutDegree:0,
[{new_variable_name,1},{new_variable_names,2},
 {new_variable_name,2},{new_variable_names,3}]

Cluster 4, Indegree:4, OutDegree:1,
[{annotate_bindings,2},{annotate_bindings,3},
 {var_annotate_clause,4},{vann_clause,4},
 {annotate_bindings,1}]

 …

Demo!

Future work!

Incremental detection of module bad smells,
e.g. in overnight builds.!
!

Partition module exports according to client
modules.!
!

Case studies.!
!

Conclusions!

Identify and solve existing modularity flaws in
an incremental way.!
!

Code smell detection and refactoring
suggestions help to improve the usability of
refactoring tools.!
!

www.cs.kent.ac.uk/projects/wrangler/ !

