
Jon Meredith Basho Technologies

MODELING EVENTUAL CONSISTENCY
DATABASES WITH QUICKCHECK

1

basho

WHERE IS THIS FROM?

•Quickcheck Guru in a NoSQL world?

•A week of consulting with a real guru, John Hughes.

•With acolytes Scott Fritchie, Dave “Dizzy” Smith and me.

2

Thanks for coming.
Today I’m going to talk about our experience using QuickCheck to test
Riak.
Back in January we spent a week working on how

basho

WHO AM I?

Jon Meredith

•Learned Erlang to work on a Dynamo clone 3 years ago.

•Learned QuickCheck soon after.

•Now working on Riak at Basho Technologies.

3

basho

GOAL

Test Riak works correctly during failure.

Failure: Node death

Also: Network partitions

4

Riak is
a scalable, highly-available, networked

key/value store.

basho

JUST ENOUGH RIAK

•Inspired by Amazon’s Dynamo.

•Key/Value store + Metadata

•Riak chooses Availability and Partition tolerance over Consistency.

• Instead provides eventual consistency.

6

basho

DISTRIBUTED BY DESIGN

•Designed to run on a cluster of nodes.

•Keys are hashed onto a 160-bit hash ring.

•Ring is divided into Q equal partitions.

•Each partition is owned by a vnode.

•Physical nodes run multiple vnodes.

7

basho

{p8,n4}

{p1,n1} {p2,n2}

{p7,n3}n3

n2n1

n4

8

basho

{p8,n4}

{p1,n1}

{p2,n2}

{p7,n3} {p3,n3}

{p6,n2}

{p5,n1}

{p4,n4}

9

basho

JUST ENOUGH DYNAMO

• Each object is replicated to N vnodes.

• Vnodes chosen by hashing key and picking next N partitions - ‘preference list’.

• To write, send copies to N vnodes in the cluster.

• At least ‘W’ must succeed.

• To read, request copied from the same N vnodes

• At least ‘R’ must succeed.

10

basho

{p8,n4}

{p1,n1}

{p2,n2}

{p7,n3} {p3,n3}

{p6,n2}

{p5,n1}

{p4,n4}

11

basho

{p8,n4}

{p1,n1}

{p2,n2}

{p7,n3} {p3,n3}

{p6,n2}

{p5,n1}

{p4,n4}

12

{p5,n2}

n1 down

basho

{p8,n4}

{p1,n1}

{p2,n2}

{p7,n3} {p3,n3}

{p6,n2}

{p5,n1}

{p4,n4}

13

{p5,n2}

basho

{p8,n4}

{p1,n1}

{p2,n2}

{p7,n3} {p3,n3}

{p6,n2}

{p5,n1}

{p4,n4}

14

basho

{p8,n4}

{p1,n1}

{p2,n2}

{p7,n3} {p3,n3}

{p6,n2}

{p5,n1}

{p4,n4}

15

{p5,n2}

n1 partitioned

Same mechanism handles network partitions as failures.

basho

{p8,n4}

{p1,n1}

{p2,n2}

{p7,n3} {p3,n3}

{p6,n2}

{p5,n1}

{p4,n4}

16

{p5,n2}

Riak has great availability properties.
No locking consitency.
Possible for multiple values to be present per object.
Riak revisions objects so some cases can be handled automatically.
But if multiple writers modify the same object there will be conflicts.

basho

SIMPLE INTEGRATION TEST

•Test get/puts against a cluster of nodes.

•Model multiple clients.

•Stateful problem - eqc_statem to the rescue!

17

basho

JUST ENOUGH QUICKCHECK

• Erlang QuickCheck (EQC) - Property based testing tool by Quviq.

• You write tests as properties of your system.

• Properties use EQC generators to create parameters.

• Run code on the parameters to verify the property is true.

18

basho

SIMPLEST EXAMPLE

my_test() ->
 eqc:quickcheck(reverse_prop()).

reverse_prop() ->
 ?FORALL(L,
 list(int()),
 begin
 lists:reverse(lists:reverse(L)) == L
 end).

basho

SHRINKING
bad_prop() -> ?FORALL(L, list(int()),
 begin
 lists:reverse(L) == L
 end).
1> listeg:bad_test().
Starting Quviq QuickCheck version 1.22.2
 (compiled at {{2011,1,13},{22,29,18}})
Licence for Basho reserved until {{2011,3,20},{17,7,46}}
............Failed! After 13 tests.
[-3,4]
Shrinking...(3 times)
[0,1]

basho

JUST ENOUGH EQC_STATEM

• eqc_statem is a framework for testing stateful things

• You provide a command generator

• eqc_statem generates a series of commands

• You check they work

• ... and if they don’t, EQC tries to find the minimum sequence for failure.

21

basho

EQC_STATEM CALLBACKS

• initial_state() -- Initialize a state record

• command(State) -- Generator that returns an MFA

• next_state(State,Result,Cmd) -- Update state after a command

• precondition(S, Cmd) -- Check it is valid to enter a state

• postcondition(S, Cmd, Result) -- Check the command executed correctly

22

basho

EQC_STATEM
my_prop() ->
 ?FORALL(Cmds,commands(?MODULE),
 begin
 {H,S,Res} = run_commands(?MODULE,Cmds,[]),
 ?WHENFAIL(
 io:format("History: ~p\nState: ~p\nRes: ~p\n",[H,S,Res])
 Res == ok)
 end).
my_test() ->

eqc:quickcheck(my_prop())

23

basho

FIRST MODEL - COMMANDS

command(S) ->
 oneof([{call,?MODULE,create_client,[]}] ++
 [{call,?MODULE,get,[elements(S#st.clid), gen_bucket(),
 gen_key()]} || S#st.clients /= []] ++
 [{call,?MODULE,put,[elements(S#st.clviews), binary()]} ||
 S#st.clviews /= []]}]).

basho

FIRST MODEL - STATE

-record(st,{clients=[],
 clviews=[],
 contents=[]}).

basho

FIRST MODEL - EXECUTION
create_client() ->
 {ok, C} = riak:local_client(),
 C.
get(C, B, K) ->
 C:get(B, K).

put({{C, B, K}, GetResult}, V) ->
 case GetResult of
 {error, notfound} ->
 C:put(riak_object:new(B, K, V));
 {ok, Obj} ->
 C:put(riak_object:update_value(Obj, V))

basho

FIRST MODEL - NEXT STATE
%% Next state transformation, S is the current state
next_state(S,C,{call,_,create_client,_}) ->
 S#st{clients=S#st.clients ++ [C]};
next_state(S,R,{call,_,get,[_C,B,K,V]}) ->
 S#state{clviews = lists:keystore({C,B,K}, 1,
 S#state.clviews,
 {{C,B,K},R})};
next_state(S,_R,{call,_,put,[_C,B,K,V]}) ->
 S#st{contents=[{{B,K},V} |
 lists:keydelete({B,K},1,S#st.contents)]};
next_state(S,_V,{call,_,_,_}) ->
 S.

basho

FIRST MODEL - POSTCONDITIONS
postcondition(S,{call,_,get,[_C,B,K]},R) ->
 case R of
 {error, notfound} ->
 not lists:keymember({B,K}, 1, S#st.contents);
 {ok, Obj} ->
 GetVal = riak_object:get_values(Obj),
 ExpVal = [V || {{B1,K1},V} <- S#st.contents, B==B1, K==K1],
 if
 GetVal == ExpVal ->
 true;
 true ->
 {got, GetVal, expected, ExpVal}
 end

basho

WORKS, BUT...

•The model works!

•But it isn’t testing

•Failure

•Network Partitions

29

basho 30

DESPITE THAT, STILL FOUND A BUG!

• Intermittently saw strange duplicated output

Res: {postcondition,{got,
 [<<"Ý;úw|">>,<<"Ý;úw|">>,<<"ÝÍ">>,<<"ÝÍ">>,
 <<221,243,200,4,205,205,141,202>>,
 <<221,243,200,4,205,205,141,202>>],
 expected,
 [<<"Ý;úw|">>,<<"ÝÍ">>,
 <<221,243,200,4,205,205,141,202>>]}}

basho 31

DUPLICATED OBJECTS

• Hard to reproduce - tried ?ALWAYS/?SOMETIMES.

• Enough details in ?WHENFAIL - Scott spotted different timestamps

• Switched from Gregorian seconds to now() - easy reproduction.

• bz://977 in bugzilla & fixed in the product.

basho

IMPROVING MODEL WAS HARD

• Added node up / node down commands.

• Resetting a cluster of nodes is fiddly ... and it takes a long time

• Speedups by running on a single node hampered by side-effects.
 ... heroic efforts by Scott on both fronts.

• All of a sudden, very hard to know what the correct postconditions should be.

basho

PAUSE & RETHINK MODEL

33

• Interested in failure cases.

•Riak is eventually consistent.

• Insight: eventually consistent means in the end.

basho

RIAK EVENTUAL CONSISTENCY

34

•Well behaved clients must get before they put.

•When Riak accepts a write:

•New value must appear eventually unless overwritten.

•Old values may appear again (but do not have to).

•Caveat: as long as all replicas of a key are not destroyed!

35

All the key changes is the preference list.
These are really just rotations of the same problem.
Save on bookkeeping.
Remind - network partitions and node failure have the same
mechanisms.

Riak is
a scalable, highly-available, networked

key/value store.

Riak is
a scalable, highly-available, networked

key/value store.

EC model tests a highly-available value store.

basho

PAUSE & RETHINK MODEL

39

• Model from the point of view of a single key - less bookkeeping.

• Fix the preference list to partitions 1..N - less logic

• Fix the node ownership: node1 owns partition1, node2 owns partition 2.

• Run inside a single VM for speed.

basho

NEW MODEL

• Phase 1 - Failure, network partitions, chaos etc

• Phase 2 - Recovery

40

basho 41

MODEL PHASE 1 - CHAOS

•Create preference lists at random.
For vnodes 1..N choose a node from1..M.

•Record the values accepted at put.

basho

{p8,n4}

{p1,n1}

{p2,n2}

{p7,n3} {p3,n3}

{p6,n2}

{p5,n1}

{p4,n4}

42

basho

{p1,n1}

{p2,n2}

{p3,n3}

43

basho

{p1,n1}

{p2,n2}

{p3,n3}

44

{p1,n2}

{p1,n3}

{p1,n4}

{p2,n1}

{p2,n3}

{p2,n4}

{p3,n1}

{p3,n4}

{p3,n4}

basho

req5

req4

req3

req2

req1

{p2,n2}

{p3,n3}

45

{p1,n2}

{p1,n3}

{p1,n4}

{p2,n1}

{p2,n3}

{p2,n4}

{p3,n1}

{p3,n4}

{p3,n4}

{p1,n1}

basho

STATE

-record(state,{store = [], % [{P,N},VnodeState]
 cids=[], % client ids
 clviews=[], % client views
 must=[], % Must appear eventually
 may=[], % May appear eventually
 value_counter=1
 %% ...
 }.

basho

command(S) ->
 oneof([{call,?MODULE,new_cid,[S#st.cids]}] ++
 [{call,?MODULE,get,[elements(S#st.cids),
 gen_pref_list(S),
 S#st.store]} ||
 S#st.cids /= []] ++
 [{call,?MODULE,put,[elements(S#st.clviews),
 gen_pref_list(S),
 S#st.val_counter,
 S#st.store]} ||

basho

%% Next state transformation, S is the current state
next_state(S,Cid,{call,_,new_cid,[_Cids]}) ->
 S#st{cids = [Cid | S#st.cids]};

next_state(S,GetRes,{call,_,get,[Cid, Pl, _Store]}) ->
 S#st{clviews = [{Cid,GetResult,S#st.must} |
 remove_cid(Cid, S#st.clviews)]};

basho

next_state(S,NewStore,{call,_,put,
 [{_Cid, _GetResult, MustAtGet}=ClView,
 Pl, Value, _Store]}) ->
 S#st{store = NewStore,
 must = [Value | S#st.must -- MustAtGet],
 may = MustAtGet ++ S#st.may,
 clviews = lists:delete(CV, S#st.clviews),
 value_counter = S#st.value_counter + 1}.

basho

get(Cid, PrefList, Store) ->
 VnodeObjs = get_vnodes(PrefList, Store),
 current:get_fsm(VnodeObjs, Cid).

put({Cid,GetRes,_MustAtGet}, PrefList, Value, Store) ->
 VnodePut = current:put_fsm(Cid, GetResult, Value),
 put_vnodes(VnodePut, PrefList, Store).

basho 51

MODEL PHASE 2 - RECOVERY

•Execute Riak handoff process against last state
(returned by eqc_statem:run_commands).

•Do one last get against the final state.

•Check the returned object contains all the ‘must’ values.

basho 52

{p1,n2}

{p1,n3}

{p1,n4}

{p2,n1}

{p2,n3}

{p2,n4}

{p3,n1}

{p3,n4}

{p3,n4}

{p1,n1}

{p2,n2}

{p3,n3}

The N value stores how many replicas of each key are stored.
As nodes may come and go, there is a chance of the cluster containing
stale data or conflicts.
Riak handles this by versioning objects with vector clocks and
requesting all N objects.
Using the vector clock we can tell if the data is just stale or in conflict.
Riak can handle this with a last timestamp wins strategy or provide the
conflicts back to the application.

basho 53

{p1,n2}{p1,n3}{p1,n4}

{p2,n1}{p2,n3}{p2,n4}

{p3,n1}{p3,n4}{p3,n4}

{p1,n1}

{p2,n2}

{p3,n3}

The N value stores how many replicas of each key are stored.
As nodes may come and go, there is a chance of the cluster containing
stale data or conflicts.
Riak handles this by versioning objects with vector clocks and
requesting all N objects.
Using the vector clock we can tell if the data is just stale or in conflict.
Riak can handle this with a last timestamp wins strategy or provide the
conflicts back to the application.

basho

get

54

{p1,n2}{p1,n3}{p1,n4}

{p2,n1}{p2,n3}{p2,n4}

{p3,n1}{p3,n4}{p3,n4}

{p1,n1}

{p2,n2}

{p3,n3}

The N value stores how many replicas of each key are stored.
As nodes may come and go, there is a chance of the cluster containing
stale data or conflicts.
Riak handles this by versioning objects with vector clocks and
requesting all N objects.
Using the vector clock we can tell if the data is just stale or in conflict.
Riak can handle this with a last timestamp wins strategy or provide the
conflicts back to the application.

basho

complete_handoff(S) ->
 Fallbacks = [El || {{P1,N1},_O}=El <- S#st.store,
 P1 /= N1],
 Primaries = S#state.store -- Fallbacks,
 Final = lists:foldl(fun(Fallback, Store1) ->
 handoff(Fallback, Store1)
 end, Primaries, Fallbacks),
 S#state{store = Final}.

basho

check_consistency(S) ->
 PriPl = [{P,P} || P <- lists:seq(1, S#st.n)],
 case get(new_cid(S#st.cids), PriPl, S#st.store) of
 notfound ->
 S#state.must == [];
 O ->
 GotVals = current:obj_values(O),
 {S#st.must -- GotVals,
 GotVals -- (S#st.must ++ S#st.may)} ==
 {[], []}

basho

SUCCESS

•Created a simple model for a complex system.

•While testing extreme failure scenarios.

•Model did not need to know about system details - just a property.

57

basho

FURTHER WORK

• Had to extract code to make the model - want to run the real code.

• Model lost messages.

• Message delivery order.

• Other operations - e.g list keys.

58

basho

CLOSING THOUGHTS

• As always with QuickCheck, think about the properties of your system.

• No one model to rule them all (or at least not one a mortal like me can understand).

59

basho

http://www.basho.com
follow twitter.com/basho/team

riak-users@lists.basho.com
#riak on Freenode

60

Please visit our website and check us out.
We have a FastTrack section on our wiki to go through all you need to
get started.
Thank you for listening.

