
Powerful, Open-Source VoIP with Erlang
Presented by James Aimonetti

James Aimonetti

– Senior Distributed Software Engineer
– I <3 Erlang
– Background in Comp Sci & Mathematics
– Sports Enthusiast
– mc_ on #2600hz, #erlang

About
Me

Scaling VoIP is Complicated

Lots of Mature Tools
– OpenSIPs
– FreeSWITCH
– CDR Tool
– DTH / BillSoft
– Yate
– Soft Clients
– Etc.

All of them live on their own
– … yet depend on each other

VoIP Tools Are Fragmented

We Need Glue.

Need to Understand Common Needs
– Scale easily

• # of VoIP channels

– Reliability
• Redundancy of Call Processing
• Consistent Call Handling

– Flexibility
• Access to ANY APIs in a SoftSwitch
• No lock-in to specific development languages

– Ownership
• Own data / VoIP circuits / Software / etc.

Choosing Our Glue

Whistle VoIP Platform = Glue
– AMQP - RabbitMQ
– CouchDB
– FreeSWITCH
– OpenSIPs
– HTTP / REST - Webmachine
– Business Logic (WhApps)

Why These Components?

Whistle VoIP Platform

Erlang = Super Glue

– Built for Telecom
– Strong Supervision
– Inherently Distributable
– Highly Concurrent
– Asynchronous Design is Easy
– Code is Short, Concise, Powerful
– Cross-Platform (even Windows & MIPS!)
– Fast
– EASY

Our Research: the Core

Event Processing in
PHP
• 191 Lines to Parse Events

(text)

Event Processing in
Erlang

Our Research : the Core

• 23 Lines to Parse Events
(native)

Need : Real-time Messaging
– Call Control
– Resource Monitoring

Why AMQP
– Built-in Messaging is Fast

• Designed for Financial Systems

– Easy to Scale & Cluster
– Most Important: Directed Messaging

• Messages only go where they need to go
• On a busy switching environment, this is critical
• Multiple Strategies for Directing Messages

Our Research : Messaging

How it relates to telecom

– One VoIP channel is going to produce:
• 1 Request / Multiple Initial Responses
• 100 or so call events published
• 0->Many messages for call manipulation
• Expecting 300 calls/second per box
• Expecting 3,000-4,000 events per second

max

Our Research : Messaging

Need : Scalable Storage, Flexible
Schema
– Heavy Read, Less Write (reconfigure

infrequently)
– Features Change Constantly

• 0 downtime for maintenance is goal

Why CouchDB?
– NoSQL – based

• Schema changes regularly, but usually based on core
object (translates well to a document)

– Databases are Lightweight Concepts
– Replication is Stupidly Simple

• A database, list of documents, or a view
– Sharding is Stupidly Simple & Flexible

Our Research : Storage

Our Research : Storage

Clie
nt F

ire
w

al
l

Need : Fast Deployment, Easy
Management
– Growth in Customers Usually Inconsistent
– Resource Demand Varies by Situation
– Resource Demand Varies by Component

Why Erlang?
– One VM and Library to Deploy
– Networking is Built-In
– Many, many lightweight threads possible
– Everything can live anywhere

Our Research : Scalability

Our Research : Scalability

Our Research : Scalability

Need : Monitoring, Up-Time
– This needs to be built-in because it’s expected
– Nothing standard really out there

Why FreeSWITCH + Erlang?
– Round-trip media monitoring with audio
– Test true audio latency on circuits
– Test true up-time across all call paths

Our Research : Maintenance

Our Research : Maintenance

Audio
Sent

Audio
Received

Latency of X miliseconds

Need : APIs, Easy Mashups, Simple
– Whistle = The Ultimate Mashup Tool

Why REST / Crossbar?
– Layer 1: Abstraction of real-time events
– Layer 2: Abstraction of common features
– Layer 3: Provide Common Interface

• REST keeps it easy and language agnostic

Our Research : Simplicity

Our Research : Simplicity

Our Research : Simplicity

The Full Picture

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

