
Designing for Scale
Knut Nesheim @knutin

Paolo Negri @hungryblank

About this talk

2 developers and erlang
vs.

1 million daily users

Social Games
Flash client (game) HTTP API

Social Games
Flash client

• Game actions need to be
persisted and validated

• 1 API call every 2 secs

Social Games
HTTP API

• @ 1 000 000 daily users

• 5000 HTTP reqs/sec

• more than 90% writes

The hard nut

http://www.flickr.com/photos/mukluk/315409445/

Users we expect

0

250000

500000

750000

1000000

July December

DAU

“Monster World”
daily users

july - december 2010

Users we have

0

50

march april may june

DAU

New game
daily users

march - june 2011

What to do?

1 Simulate users

Simulating users

• Must not be too synthetic (like
apachebench)

• Must look like a meaningful game session

• Users must come online at a given rate and
play

• Multi protocol (HTTP, XMPP) benchmarking tool

• Able to test non trivial call sequences

• Can actually simulate a scripted gaming session

http://tsung.erlang-projects.org/

Tsung

http://tsung.erlang-projects.org/

Tsung - configuration

<request subst="true">
<http url="http://server.wooga.com/users/%
%ts_user_server:get_unique_id%%/resources/column/5/
row/14?%%_routing_key%%"
method="POST" contents='{"parameter1":"value1"}'>
</http>
</request>

Fixed content Dynamic parameter

http://tsung.erlang-projects.org/

Tsung - configuration

• Not something you fancy writing

• We’re in development, calls change and we
constantly add new calls

• A session might contain hundreds of
requests

• All the calls must refer to a consistent game
state

http://tsung.erlang-projects.org/

Tsung - configuration

• From our ruby test code

user.resources(:column => 5, :row => 14)

• Same as
<request subst="true">
<http url="http://server.wooga.com/users/%
%ts_user_server:get_unique_id%%/resources/column/5/
row/14?%%_routing_key%%"
method="POST" contents='{"parameter1":"value1"}'>
</http>
</request>

http://tsung.erlang-projects.org/

Tsung - configuration

• Session

• requests

• Arrival phase

• duration

• arrival rate

A session is a
group of requests

Sessions arrive in
phases with a
specific arrival

rate

http://tsung.erlang-projects.org/

Tsung - setup

app server

app server

app server

tsung
master

tsung
workerHTTP reqs

Application

ssh

Benchmarking
cluster

http://tsung.erlang-projects.org/

Tsung

• Generates ~ 2500 reqs/sec on AWS
m1.large

• Flexible but hard to extend

• Code base rather obscure

What to do?

2 Collect metrics

http://tsung.erlang-projects.org/

Tsung-metrics

• Tsung collects measures and provides
reports

• But these measure include tsung network/
cpu congestion itself

• Tsung machines aren’t a good point of view

HAproxy

app server

app server

app server

tsung
master

tsung
workerHTTP reqs

Application

ssh

Benchmarking
cluster

haproxy

HAproxy

“The Reliable, High Performance TCP/
HTTP Load Balancer”

• Placed in front of http servers

• Load balancing

• Fail over

HAproxy - syslog

• Easy to setup

• Efficient (UDP)

• Provides 5 timings per each request

HAproxy

app server

app server
tsung

master

tsung
worker

Application

ssh

Benchmarking
cluster

haproxy

• Time to receive request from client

HAproxy

app server

app server
tsung

master

tsung
worker

Application

ssh

Benchmarking
cluster

haproxy

• Time spent in HAproxy queue

HAproxy

app server

app server
tsung

master

tsung
worker

Application

ssh

Benchmarking
cluster

haproxy

• Time to connect to the server

HAproxy

app server

app server
tsung

master

tsung
worker

Application

ssh

Benchmarking
cluster

haproxy

• Time to receive response headers from server

HAproxy

app server

app server
tsung

master

tsung
worker

Application

ssh

Benchmarking
cluster

haproxy

• Total session duration time

HAproxy - syslog

• Application urls identify directly server call

• Application urls are easy to parse

• Processing haproxy syslog gives per call
metric

What to do?

3 Understand metrics

Reading/aggregating
metrics

• Python to parse/normalize syslog

• R language to analyze/visualize data

• R language console to interactively explore
benchmarking results

R is a free software environment for
statistical computing and graphics.

What you get

• Aggregate performance levels (throughput,
latency)

• Detailed performance per call type

• Statistical analysis (outliers, trends,
regression, correlation, frequency, standard
deviation)

What you get

4 go deeper

What to do?

Digging into the data

• From HAproxy log analisys one call
emerged as exceptionally slow

• Using eprof we were able to determine
that most of the time was spent in a redis
query fetching many keys (MGET)

Tracing erldis query
• More than 60% of runtime is spent

manipulating the socket

• gen_tcp:recv/2 is the culprit

• But why is it called so many times?

Understanding the
redis protocol

C: LRANGE mylist 0 2

s: *2

s: $5

s: Hello

s: $5

s: World

<<"*2\r\n
 $5\r\n
 Hello\r\n
 $5\r\n
 World\r\n">>

Understanding erldis
• recv_value/2 is used in the protocol parser

to get the next data to parse

A different approach

• Two ways to use gen_tcp: active or passive

• In passive, use gen_tcp:recv to explicitly ask
for data, blocking

• In active, gen_tcp will send the controlling
process a message when there is data

• Hybrid: active once

A different approach

• Is active sockets faster?

• Proof-of-concept proved active socket
faster

• Change erldis or write a new driver?

A different approach

• Radical change => new driver

• Keep Erldis queuing approach

• Think about error handling from the start

• Use active sockets

A different approach

• Active socket, parse partial replies

Circuit breaker

• eredis has a simple circuit breaker for when
Redis is down/unreachable

• eredis returns immediately to clients if
connection is down

• Reconnecting is done outside request/
response handling

• Robust handling of errors

Benchmarking eredis

• Redis driver critical for our application

• Must perform well

• Must be stable

• How do we test this?

Basho bench

• Basho produces the Riak KV store

• Basho build a tool to test KV servers

• Basho bench

• We used Basho bench to test eredis

Basho bench
• Create callback module

Basho bench
• Configuration term-file

Basho bench output

eredis is open source

https://github.com/wooga/eredis

5 measure internals

What to do?

Measure internals

HAproxy point of view is valid but how to
measure internals of our application, while
we are live, without the overhead of
tracing?

Think Basho bench

• Basho bench can benchmark a redis driver

• Redis is very fast, 100K ops/sec

• Basho bench overhead is acceptable

• The code is very simple

Cherry pick ideas from
Basho Bench

• Creates a histogram of timings on the fly,
reducing the number of data points

• Dumps to disk every N seconds

• Allows statistical tools to work on already
aggregated data

• Near real-time, from event to stats in N+5
seconds

Homegrown stats

• Measures latency from the edges of our
system (excludes HTTP handling)

• And at interesting points inside the system

• Statistical analysis using R

• Correlate with HAproxy data

• Produces graphs and data specific to our
application

Homegrown stats

Recap

Measure:

• From an external point of view (HAproxy)

• At the edge of the system (excluding
HTTP handling)

• Internals in the single process (eprof)

Recap

Analyze:

• Aggregated measures

• Statistical properties of measures

• standard deviation

• distribution

• trends

Thanks!

http://www.wooga.com/jobs

knut.nesheim@wooga.com @knutin

paolo.negri@wooga.com @hungryblank

