

 Functions +
Messages + Concurrency

= Erlang

Joe Armstrong

Erlang

Concurrent
programming Functional

programming

Fault
tolerance

Concurrency
Oriented

 programming

Multicore

Problem domain

Highly concurrent (hundreds of thousands of parallel
activities)
Real time
Distributed
High Availability (down times of minutes/year – never down)
Complex software (million of lines of code)
Continuous operation (years)
Continuous evolution
In service upgrade

Erlang
� Very light-weight processes
� Very fast message passing
� Total separation between processes
� Automatic marshalling/demarshalling
� Fast sequential code
� Strict functional code
� Dynamic typing
� Transparent distribution
� Compose sequential AND concurrent code

Erlang

Concurrent
programming Functional

programming

Fault
tolerance

Concurrency
Oriented

 programming

Multicore

2002

Fraction of Chip reachable in one clock cycle

[source] Erik Hagersten http://www.sics.se/files/projects/
multicore/day2007/ErikH-intro.pdf

Clock frequency trend for Intel Cpus (Linux Journal)

Read: Clock rate verses IPC. The end of the road for
Conventional Microarchitectures. Agarwal et.al 2000

Clock Frequency

Due to hardware changes:

Each year your sequential
programs will go slower

Each year your concurrent
programs will go faster

2005 – 2015
Paradigm shift in

CPU
architectures

Three New
Architectures

ONE - Multi core

Cell Computers –

TWO -
GPUs

Intel Polaris – 2007

1 Tflop at 24 Watts

THREE – network on
Chip (NOC)

ASCI RED- 1997
- 1997
- First machine over 1 Tera
 Flop
- 2,500 sq ft floor space
 104 cabinets
- 9326 pentium pro
 processors
- 850 KW

 2 cores won't hurt you
4 cores will hurt a little
8 cores will hurt a bit
16 will start hurting
32 cores will hurt a lot (2009)
...
1 M cores ouch (2019)
 (complete paradigm shift)

1997 1 Tflop = 850 KW
2007 1 Tflop = 24 W (factor 35,000)
2017 1 Tflop = ?

Goal
Make my program run N times faster on an
N core CPU with
 no changes to the program
 no pain and suffering

Can we do this?

Yes Sometimes (often)

Due to hardware changes:

Each year your sequential
programs will go slower

Each year your concurrent
programs will go faster

Erlang

Concurrent
programming Functional

programming

Fault
tolerance

Concurrency
Oriented

 programming

Multicore

To make
a fault-tolerant system

you need at least

two

computers

If one computer crashes
the other must take over

= No Shared data
= Distributed programming
= Pure Message passing

To do fault tolerant computing we
need at least two isolated computers

= Concurrent programming
 with pure message passing

To do very fault tolerant computing
we need lots of isolated computers

= Scalable

Fault tolerance

Distribution
Concurrency
Scalability

are inseparable

Erlang

Concurrent
programming Functional

programming

Fault
tolerance

Concurrency
Oriented

 programming

Multicore

Two models of Concurrency

Shared Memory
 - mutexes
 - threads
 - locks

Message Passing
 - messages
 - processes

Shared
Memory

Programming

Shared memory

Problem 1
Your program
crashes in
the critical region
having corrupted
memory

Problem 2

Sweden Australia?

Where do we (physically) locate the
shared memory?
Impossible to get low-latency and make
consistent (violates laws of physics)

Thread Safety
Erlang programs are
automatically thread
safe if they don't use
an external resource.

Sharing is the
property that

prevents
fault tolerance

and
Thread safety

Message
Passing

Concurrency

No sharing
Pure message passing
No locks
Lots of computers (= fault tolerant
scalable ...)
Functional programming (no side
effects)

Erlang

Concurrent
programming Functional

programming

Fault
tolerance

Concurrency
Oriented

 programming

Multicore

What is COP?

� Large number of processes
� Complete isolation between processes
� Location transparency
� No Sharing of data
� Pure message passing systems

Machine

Process

Message

Why is COP nice?

� We intuitively understand concurrency
� The world is parallel
� The world is distributed
� Making a real-world application is based on

observation of the concurrency patterns and
message channels in the application

� Easy to make scalable, distributed applications

Concurrency Oriented Programming

� A style of programming where
concurrency is used to structure the
application

� Large numbers of processes
� Complete isolation of
 processes
� No sharing of data
� Location transparency
� Pure message passing

My first message is that
concurrency

is best regarded as a program
 structuring principle”

Structured concurrent programming
 – Tony Hoare

Examples of COP architectures
remember – no shared memory
– pure message passing

Email
Google – map – reduce (450,000
machines)
People (no shared state, message
passing via voiceGrams, waving
arms, non-reliable etc.)

Erlang

Concurrent
programming Functional

programming

Fault
tolerance

Concurrency
Oriented

 programming

Multicore

Functional programming

Scary stuff

Or easy?

fac(0) -> 1;
fac(N) -> N*fac(N-1).

Why is FP good?
� Side effects are strictly controlled

If you call the
same function twice with

the same arguments
it should return the same value

Referential transparency

S S'

In Out

In,S Out,S'

OOP FP

Functional programming languages

In,S Out,S'

FP

FLPs carry state with them
wherever the flow of control
goes. Different FPLs provide

different notations and
mechanisms for hiding this

from the user.

In Erlang we hide the state
in a process. In Haskell in a

monad

FLPs have are based on a formal
mathematical model

Lambda calculus (Pi calc, CSP)

Why is this important?
� Compositional properties
� Output of one function must be input to next
� f(g(h(i(k(X)))))
� Echo “foo” | k | i | h | g | f
� No mutable state means nothing to lock and

automatic thread safety when parallelised
� Can reuse pure functions

FP is on the rise

� Haskell
� Erlang
� O'Caml, F#

Threads

Sharing

Mutexes - Locks

Synchronized methods

Mutable state

BAD STUFF
Very very bad

Mutable state is the root of all evil

FPLs have no mutable state

GOOD STUFF
Processes
Controlled side effects
Pure functions
Copying
Pure Message passing
Failure detection

Erlang

Concurrent
programming Functional

programming

Fault
tolerance

Concurrency
Oriented

 programming

Multicore

Erlang in 11 Minutes

Sequential Erlang 5 examples
Concurrent Erlang 2 examples
Distributed Erlang 1 example
Fault-tolerant Erlang 2 examples
Bit syntax 1 example

Sequential Erlang

 Factorial -module(math).
-export([fac/1]).

fac(N) when N > 0 -> N*fac(N-1);
fac(0) -> 1

> math:fac(25).
 15511210043330985984000000 Binary Tree Search

lookup(Key, {Key, Val,_,_}) -> {ok, Val};
lookup(Key, {Key1,Val,S,B}) when Key < Key1 ->
 lookup(Key, S);
lookup(Key, {Key1, Val, S, B})->
 lookup(Key, B);
lookup(key, nil) ->
 not_found.

Dynamic types
Pattern matching
No mutable data
structures

Sequential Erlang

 append append([H|T], L) -> [H|append(T, L)];
append([], L) -> L.

sort([Pivot|T]) ->
 sort([X||X <- T, X < Pivot]) ++
 [Pivot] ++
 sort([X||X <- T, X >= Pivot]);
sort([]) -> [].

> Adder = fun(N) -> fun(X) -> X + N end end.
#Fun
> G = Adder(10).
#Fun
> G(5).
15

sort

 adder

Concurrent Erlang

 spawn Pid = spawn(fun() -> loop(0) end)

Pid ! Message,
.....

receive
 Message1 ->
 Actions1;
 Message2 ->
 Actions2;
 ...
 after Time ->
 TimeOutActions
end

 send

 receive

The concurrency is in the language NOT the OS

Distributed Erlang

 Pid = spawn(Fun@Node)

alive(Node),
.....

not_alive(Node)

Fault-tolerant Erlang

 ...
case (catch foo(A, B)) of
 {abnormal_case1, Y} ->
 ...
 {'EXIT', Opps} ->
 ...
 Val ->
 ...
end,
...

foo(A, B) ->
 ...
 throw({abnormal_case1, ...})

Monitor a process

...

process_flag(trap_exit, true),

Pid = spawn_link(fun() -> ... end),

receive

{'EXIT', Pid, Why} ->

...

end

Bit Syntax - parsing IP datagrams

-define(IP_VERSION, 4).

-define(IP_MIN_HDR_LEN,5).

DgramSize = size(Dgram),

case Dgram of

 <<?IP_VERSION:4, HLen:4,

 SrvcType:8, TotLen:16, ID:16, Flgs:3,

 FragOff:13, TTL:8, Proto:8, HdrChkSum:16,

 SrcIP:32, DestIP:32, Body/binary>> when

 HLen >= 5, 4*HLen =< DgramSize ->

 OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),

 <<Opts:OptsLen/binary,Data/binary>> = Body,

 ...

This code parses the
header and extracts
the data from an IP
protocol version 4
datagram

Bit syntax – unpacking MPEG data

Some code
loop() ->
 receive
 {email,From,Subject,Text} = Email ->
 {ok, S} = file:open("inbox",[append,write]),
 io:format(S, "~p.~n",[Email]),
 file:close(S);
 {msg, From, Message} ->
 io:format("msg (~s) ~s~n", [From, Message]);
 {From, get, File} ->
 From ! file:read_file(File)
 end,
 loop().

Mike ! {email, "joe", "dinner", "see you at 18.00"}.

Helen ! {msg, "joe", "Can you buy some milk on your way
home?"}

file://localhost/
file://localhost/

Programming Multicore computers is difficult
because of shared mutable state.

Functional programming languages have no shared
state and no mutable state

Erlang has the right intrinsic properties for
programming multicore computers (concurrency
maps to the multiple CPUs, non-mutability means we
don't get any problems with memory corruption)

- Use “lots” of processes
- Avoid sequential bottlenecks
- Use “large computation”
 small data transfer (if
 possible)
- New abstractions (pmap,
 mapreduce)

Ericsson AXD301 (part of “Engine”)
Ericsson GPRS system
Alteon (Nortel) SSL accelerator
Alteon (Nortel) SSL VPN
Teba Bank (credit card system – South Africa)
T-mobile SMS system (UK)
Kreditor (Sweden)
Synapse
Tail-f
jabber.org /uses ejabberd)
Twitter (uses ejabberd)
Lshift (RabbitMQ) AMQP (Advanced Message Queuing protocol)

Commercial projects

Finally

We've known how to program parallel
computers for the last twenty years

We can make highly reliable fault tolerant
distributed real-time systems

ww.erlang.org

Questions?

