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Requirements
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Computation models
  - map-reduce
  - iterative and incremental 
Processing models
  - in stream, stateful
  - in stream, stateless
  - batch
Computation platform
  - Cloud
  - Virtualized, general
  - Bare metal



Data Parallel Trend

Scientific Computing Tools
    - R -> snow, multicore, parallel, RHIPE, R+Hadoop, etc. 
    - Mathematica -> gridMathematica
    - MatLab -> Parallel Toolbox

Internet, Big Data
 - Yahoo: S4
 - Google: FlumeJava
 - Cloudera: Crunch, Hadoop MR2

Parallelism granularity 
 - GPGPU 
 - Multi-CPU/Multicore
 - Cluster
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The concept is not really new. It is easy to find online a paper “Data Parallel Algorithms” by W. Daniel Hillis and Guy L. 
Steele, Jr. from December 1986 issue of Communications of ACM where they talk about data parallel algorithms where “their 
parallelism comes from simultaneous operations across large sets of data rather than from multiple threads of control.” Here it 
applies mostly to machines with hundreds or thousands of processors. 

Erlang has data parallelism. 
Since functions are first-class objects, they can be dispatched wherever we want them in the distributed system, on-demand, 

and with the data thereby enabling the concept of bringing computation to the data. 



Data Parallel
Given an integer vector x
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x : x[i],i = 1,n

|| f x( )
apply a function to vector elements in parallel



Map Reduce*3 Flow
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Input Layer

An Example Flow
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Architecture
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Architecture
• Flow supervisor/monitor – layer – worker 

hierarchy 
• ETS/DETS/Mnesia/TCP/UDP tables for 

sources, sinks and intermediaries
• Synchronous or asynchronous message 

passing between layers
• Plugins
• Example layer parameters: 

– Layer size 
– Layer identification
– Layer input, output data/format and connectivity 

with adjacent layers 
– Mapping functions between layers: partitioning 



Layer
• Process
• Spawns and monitors 

workers
• Elastic (number of 

workers)
• Workers perform 

uniform functions
• Connects to other 

layers, sources, sinks, 
intermediaries, 
resources

• Maps to physical 
nodes

Layer

Worker

Worker

Worker
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Sources, Sinks and Intermediaries

• Storage for crucial data 
sets

• Staging used for input 
for one or more flows

• Intermediary: output 
from previous layer, 
input to the next one; 
implementing barrier 
concept

• Both can be used for 
staging input for 
multiple downstream 
layers/flows

Source

ETS

ETS

ETS

Interme
diary

ETS

ETS

ETS



Workers
• Input layer: predefined 

for ETS scan
• UDF assumes 

intermediary/staging 
table record format

• UDF defined externally, 
still Erlang

• Partitioning/load 
balancing function: 
predefined or custom

• Output to intermediary 
or another layer

• All functionality local to 
a node

Worker

UDFInput
Partitio
ning/

Output



Flow Language
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Flow Language: Configuration Hierarchy
Infrastructure

Cloud/VM
Hardware

Platform/Framework
Erlang node configuration
Code repository: framework, plugins, global libraries (Erlang, C/C++, CUDA)

Applications
application libraries
flow

flow infrastructure (TCP, UDP, ETS, DETS, Mnesia)

flow structure: flow graph (nodes, communication)

flow replication
optimization

monitoring

scheduling
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Infrastructure
Platform

Application



Flow Language
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% cluster hardware specs

{hardware, [

       !!   {physical_nodes, [

! !   ! !    {cache01, [{memory, 128G}, {cores, 16}, {disk, 1T}]},

                      {cache02, [{memory, 128G}, {cores, 16}, {disk, 1T}]},

                      ...

                      {cache08, [{memory, 128G}, {cores, 16}, {disk, 1T}]}

                      ]

! !   }]

}

% Erlang node specs

{nodes, [  ! !    {pero@cache01, [{pa, “/nas1/dpar/data”}, 

                                      {config, “/nas1/dpar/apps/conf/flow1.cfg”},...]

                      },

                      {pero@cache02, [{pa, “/nas1/dpar/data”}, 

                                      {config, “/nas1/dpar/apps/conf/flow1.cfg”},...},

                      ...

                      {pero@cache08, [{pa, “/nas1/dpar/data”}, 

                                      {config, “/nas1/dpar/apps/conf/flow1.cfg”},...}

          ]

}

% data sources and sinks

       {source, [{type, ETS}, {name, adcom_events}, {size, 12}]}, 

       {source, [{type, DETS}, {name, adtech_events}, {size, 12}]}, 

       {source, [{type, DETS}, {name, tacoda_events}, {size, 12}]}, 

       {sink, [{type, Mnesia}, {name, user_profiles}]}, 

% processing graph, layers, workers

      {layers, [scanner, processor, aggregator]},

       {layer, adcom_scanner, [

       !       {type, scanner}, 
       !       {predecessor, adcom_events}, % source specs for the scanner 
!        {operation_mode, sequential_parallel_scan}, % scan records in order, in 

parallel fashion across tables

!        {successor, [processor]},

!        {partition, {partitioner, partitioning_fun, [adcom]}}, % user-defined 

partitioning function acting on adcom event records

!        {communication, {concurrent, asynchronous}}

!  ]},

 {layer, adtech_scanner, [

       !       {type, scanner}, 
       !       {predecessor, adtech_events}, % source specs for the scanner 
!        {operation_mode, sequential_parallel_scan}, % scan records in order, in 

parallel fashion across tables

!        {successors, [processor]},

!        {partition, {partitioner, partitioning_fun, [adtech]}}, % user-defined 

partitioning function acting on adcom event records

!        {communication, {concurrent, asynchronous}}

!  ]},...

  ]},

% processing graph, layers, workers

{layer, processor, [

! ! {type, worker}, 

! ! {predecessors, [adcom_scanner, adtech_scanner, tacoda_scanner]},

! ! {successors, [aggregator]}, 

! ! {function, {worker, worker_fun, []}}, % say extracts relevant info from the 

event record and passes on with key equal to TID or ACID

! ! {communication, {concurrent, asynchronous}},

! ! {distribution, local}, 

! ! {size, 36} % 36 workers per layer per node 

! ! ]

! }

! {layer, aggregator, [

! ! {type, worker}, 

! ! {predecessors, [processor]},

! ! {successors, [user_profiles]}, 

! ! {function, {aggregator, aggregator_fun, []}}, % aggregates all fields with a 

common ACID/TID into the same entry in Mnesia table

! ! {communication, {concurrent, asynchronous}},

! ! {distribution, local}, 

! ! {size, 36} % 36 workers per node 

! ]

}



Iterative Flow - Concept Rank
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Wikipedia Concept Rank Problem Space
3,091,923 concepts 
42,205,936 links 
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PR(pi ) =
1− d
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+ d
PR(pj )
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Concept Rank Results
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CR Flow
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CR Compute Worker
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CR WorkerToken

Mnesia

CR6

CR7

read

write

if phash2(CID) == token
  compute_cr(CID)

bMap ETS fMap ETS

backlinks(CID)

foreach concept B in backlinks(CID)
  FL = length(forwlinks(B))
  compute sum(CR(B))/FL

1

2

3
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Computation Metrics and Results
- memory use: 420m RAM, 63m resident memory

- Mnesia is distributed across nodes. 

- fMap and bMap are loaded on each node in ETS tables

- fMap 126M, 3,091,923 records

- bMap 121M, 2,479,969 records 

- conceptrankX tables in Mnesia -> 3,091,923 records, 31,374,390 words of memory each

Runtimes, 10 iterations: 

* 1 worker process, 1 node: 50 minutes (time for 10 iterations) 

* 10, 1: 18.36 min 

* 20, 1: 23.48 min

* 5, 1: 19.8 min

* 2 nodes, 10 proc/node: 14.83 min 

* 3 nodes, 10 proc/node: 11.16 min low network traffic 10MB/sec; nice low traffic and fast response with not 
so high CPU usage

* 4 nodes, 10 proc/node: 11.83 min med-high to high 30MB/sec 

* 4 nodes, 15 proc/node: 12.67 min med-high network traffic 25MB/sec

* 4 nodes, 5 proc/node: 8.83 min  high network traffic 35MB/sec * 

* 4 nodes, 2 proc/node: 22.3 min  medium network traffic 15MB/sec across all four nodes * 21

- finding compromise point between network traffic due to Mnesia table sync and local computation

requirements on each node - seems like 5 proc/node minimizes response time at the expense of 

high network traffic. Reducing number of processes per node to 2 reduces network traffic, but

impacts computing capacity (CPU utilization is lowest of all aproaches). So, in that case, 

system spends most time computing the ranks. 



Concept Rank Flow: Tradeoffs
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Optimization


Minimize 
run time
network traffic
cpu utilization
disk i/o
cloud expense
some combination of the above
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Flow MonitorSet Flow
Parameters

status

Monitor DBOptimizer



Run Time Local Minima 
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Swipe Results
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Swipe Ganglia Monitoring
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Conclusion and Future
- Erlang is very convenient and appropriate 

language and platform for data-parallel 
flows

- Building languages and platforms makes 
sense to facilitate easy flow specification

- Small Erlang team can do wonders 
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Questions, Comments?
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