
Erlang as a cloud citizen
Paolo Negri @hungryblank



• 10 millions players

• 2 billions game server requests (http)

• 20 devops people

1 day at



Cloud

“A cloud is made of billows upon 
billows upon billows that look like 
clouds. 

As you come closer to a cloud you 
don't get something smooth, but 
irregularities at a smaller scale.”

Benoît B. Mandelbrot

http://www.flickr.com/photos/nirak/644336486



AWS Cloud



This talk will answer

• Why building a system targeting the 
cloud?

• How many EC2 instances do you 
need to respond to 0.25 billion 
uncacheable game reqs/day?



15 months ago...

http://www.flickr.com/photos/wheatfields/515068701



1st cloud hosted project, 
lessons learned

Pushing live the 60th application 
server?

not different from adding the 6th!

push a button1



1st cloud hosted project, 
lessons learned

local network/local disk are low 
performance general purpose 
tools

(nothing to do with ad hoc data 
center solutions)2



1st cloud hosted project, 
lessons learned

Complete automation is cool

Ease of adding hosts/automation 
can lead to bloated infrastructure3



1st cloud hosted project, 
points of pain

• A lot of inefficient app servers (as per 
tweets)

• Much effort to scale up/maintain 
databases (mySQL & Redis)

• Expensive, not crazy expensive, but 
expensive



Why trying again?

http://www.flickr.com/photos/kky/704056791/



Uncertainity

• will we reach100K or 3 millions users?

• 3 million users in 2 weeks or 12 months?

• cheat tool released 1h ago => single game 
call up 5000%

• weekly releases, new feature performance 
impact?



the cloud

• standard units (instances) of 
computing capacity

• a network connecting all instances

• an API to provision/dismiss instances



the cloud

Sounds like a good framework to 
compose computing capacity

Why didn’t work as a framework 
to compose throughput?



Scaling in the cloud
the recipe

CLOUD: composable units of computing capacity

+
DEVELOPER: turn a unit of computing capacity in 

a unit of throughput

=
composable throughput, a plan for scaling BIG



turn a unit of 
computing capacity 

in a unit of 
throughput

http://www.flickr.com/photos/pasukaru76



Unit of throughput,
where?

Database

App server



Unit of throughput,
joke?

Database

App serverApp server App server App server

Database

Cache



Unit of throughput?

Database

App server

No unit!



Unit of throughput?

Database

App server

Tightly coupled throughput?



Unit of throughput?

Database

App server

Monolithic throughput?



Monolithic throughput



Monolithic throughput

• likes monolithic infrastructure!

• scales well vertically

• wants screaming fast stack (network, 
disks...)

• any performance glitch impacts the 
whole system



Tightly coupled throughput
+

loosely coupled hardware
(like cloud)

=
frustration



Who leads the tightly 
coupled dance?

Database

App server



Who leads the tightly 
coupled dance?

Database

App server

The stateless 
application server!



Stateless application 
servers guarantee

one thing...

which?



Data is never
where you need it



And another one...



If you can feed them 
data fast enough...

they’ll choke on 
garbage collection



We measure memcache
HIT / MISS

why app servers need 
to be 100% MISS?



Where’s the best 
knowledge about hot/

cold data?



Even the reverse makes 
more sense

Database

App server

1. pick your data up

2. go in the stateless 
app server



What
Went
Wrong?



He can tell you!

• Rich Hickey

• Clojure author

“...If not in Erlang which I 
think has a complete story 
for how they do state”[1]
[1] Value Identity State @0.27

http://goo.gl/Zdjv0

http://www.flickr.com/photos/ghoseb/5120173586



Most languages and runtimes 
don’t have a safe solution for 
concurrent, long lived state

Erlang stands out as an 
exception in this panorama



Erlang...

Processes are the primary 
means to structure an Erlang 

application.

wikipedia



Erlang + OTP
Generic Server Behaviour

A generic server process 
(gen_server) implemented 

using this module...

otp documentation



Erlang + OTP
Generic Server Behaviour

handle_call(_Request, _From, State) ->
    {reply, ignored, State}.

handle_cast(_Msg, State) ->
    {noreply, State}.

handle_info(_Info, State) ->
    {noreply, State}.

terminate(_Reason, _State) ->
    ok.

code_change(_OldVsn, State, _Extra) ->
    {ok, State}.



gen_server

• An erlang process

• With LOCAL state

• responding to requests from clients

A unit of throughput!



Composing throughput 
with erlang

EC2 instance
gen_server

+



Composing throughput 
with erlang

EC2 instance

1 EC2 instance + 1 erlang VM
=

N kilo gen_servers (N kilo units of throughput)



Composing throughput 
with erlang

EC2 instance

1 EC2 instance + 1 erlang VM
=

N kilo gen_servers (N kilo units of throughput)



Composing throughput 
with erlang

EC2 instance

1 EC2 instance + 1 erlang VM
=

N kilo gen_servers (N kilo units of throughput)



Composing throughput 
with erlang

EC2 instance

1 EC2 instance + 1 erlang VM
=

N kilo gen_servers (N kilo units of throughput)



Composing throughput 
with erlang

EC2 instance

1 EC2 instance + 1 erlang VM
=

N kilo gen_servers (N kilo units of throughput)



Scale by adding units 
instances



Scale up adding units 
instances



Erlang distribution



Throughput complexity

• Losely coupled peers
• Independent throughput

VS.

• Tightly coupled roles
• Dependent throughput



Where does the state 
come from?

gen_server
Database

Start

Stop



Now with database

AWS
S3



Database scalability

AWS
S3

DB is (almost) never on 
latency critical path

No need for low latency DB



Database scalability

AWS
S3

Throughput required is low

We can approximate S3 
capacity as infinite



Database scalability

AWS
S3

Ubiquitous and uniform from 
application servers point of 
view.



Remember?

AWS
S3



How it actually works

Data from 
the S3 is 
uniformly

available to 
any ec2 
instance



And as you zoom in...



And zoom in...



And zoom in you see...

EC2 instance



Always the same
kind of structure

A fractal approach to 
throughput



Fractal

“A cauliflower shows how an object 
can be made of many parts, each of 
which is like a whole, but smaller.”

Benoît B. Mandelbrot

http://www.flickr.com/photos/paulobrabo/3588387063



Homework

The exact same solution might 
not work for you...

but look for that unit of 
throughput



You need
XXXX

Smallish instances
to serve 0.25

billions uncacheable reqs/day

Answer time



You need
0XXX

Smallish instances
to serve 0.25

billions uncacheable reqs/day

Answer time



You need
00XX

Smallish instances
to serve 0.25

billions uncacheable reqs/day

Answer time



You need
0012

Smallish instances
to serve 0.25

billions uncacheable reqs/day

Answer time



What’s
1200 ?



Thanks

Paolo Negri @hungryblank

http://www.wooga.com/jobs


