
SDN, OpenFlow and the ONF

OpenFlow/Software-Defined Networking (SDN)
“OpenFlow/SDN is emerging as one of the most promising and
disruptive networking technologies of recent years. It has the potential
to enable network innovation and create choice, and thus help realize
new capabilities and address persistent problems with networking. It
also promises to give network operators more control of their
infrastructure, allowing customization and optimization, therefore
reducing overall capital and operational costs. “

Source: http://opennetsummit.org/why.html

OpenFlow
(Or: “Why can’t I innovate
in my wiring closet?”)

OpenFlow – Started 2008 at Standford

• Enabling innovation on campus
• Standard way to control flow-tables in

commercial switches and routers
• Being deployed at Stanford
• Consider deploying it at your campus too

The Stanford Clean Slate Program http://cleanslate.stanford.edu

ONF and Community grows fast!

What is the Difference?

Separation of control- and data plane!

How to configure your network?

• Static – Ask you Network Admin

• Automatic – Write some scripts

• Automatic – via Netconf, SNMP Protocols

• Dynamic – via Network Protocols

• Dynamic – via RADIUS, DIAMETER Protocols

Whats next?

#1 Ask your Network Admin

#1 Ask your Network Admin

#1 CLI Automation

“Expect is quickly becoming a part of
every UNIX user's toolbox. It allows you
to automate Telnet, FTP, passwd, rlogin,
and hundreds of other applications that
normally require human interaction.
Using Expect to automate these
applications will allow you to speed up
tasks and, in many cases, solve new
problems that you never would have
even considered before.”

#3 Netconf / SNMP

Formal protocols to configure
and monitor network devices.

• Often read only!
• Back to CLI for configuration!

#3 Dynamic Configuration

Complex Standards and Protocols
to adapt Network Behavior for
requested Services.

• Carrier Centric approach
• Based on AAA Protocols

(RADIUS, DIAMETER=)

Conclusion!

You always Configure existing
Functionality!

There is no common API to Program
the network functionality!

Program your Network!

With SDN/OpenFLow you get an API to
program the network behavior with your

language of choice!

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Rule Action Stats

1. Forward packet to port(s)

2. Encapsulate and forward to controller

3. Drop packet

4. Send to normal processing pipeline

Packet + byte counters

#1 Cellubi m2m Network

• Production Network for
m2m Communication

• Overlay Network over
four 3G provider across
the globe

• Fine granular policy
control and 1:1 NAT
funtionality

#2 Distributed BRAS

• Proof of Concept implementation

• Distributed PPPoE Termination close to the
Edge of a Carrier FTTH Network

• Eliminates huge, central, costly BRAS
installations

• Multicast Replication point is pushed to the
edge for IPTV optimisation

FlowER

Openflow Controller in Erlang

Classic Switch
vs.

Software Defined Networking
(SDN)

Classic Network Switch

• Static control path (static configuration)
VLANs, AAA, Filter, L3 Forwarding specified in
configuration

• Limited matching in forwarding decision,
mostly only things like MAC, VLAN and/or QoS
tags

• Once a forwarding decision has been made, it
can‘t be revised until it expires

Packet in Port Y:
SRC MAC: 00:11:11:11:11:11
DST MAC: 00:55:55:55:55:55

DST MAC on Port X ?
Forward on Port X ?

Flood on all Ports

Learn SRC MAC on Port Y

Interessting Questions:
• How can a MAC be moved to different

port (e.g a VM migrating to a new host)
• Can a switched be sliced into different

network partitions? E.g. Spanning Tree
with multiple VLANs

• How can ports isolated from each other
while still forming a single L2 domain?
e.g. Ethernet-to-the-Home and
Fibre-to-the-Home (FTTH) deployments

Software Defined Network (SDN)

• Control Plane decoupled from Forwarding
Plane

• Network Control Plane accessible through API

• One Control instance can control multiple
forwarding instances

• Can match on everything in the packet and in
any combination (e.g. MAC+VLAN+IP+Port)

• Can alter packet during forwarding

Data Path (specialized hardware)

Control Path API

Controller

• Controller can talk to multiple control plane instances
• Flexible matching
• MAC/Port learning over multiple instance
• Proactive moving MACs of to different ports
• Once forwarding decision has been made, forwarding

occurs in dedicate hardware at line speed

What is OpenFlow (OF)?

• Protocol specification and reference
implementation of Software Defined Network
(SDN)

• OF Datapath imlementation for Linux Kernel
(replaces bridging) and FPGA board

• Used as basis in several commercial openflow
enabled switches

O
F

en
ab

le
d

 d
at

ap
at

h
 e

le
m

e
n

t

O
F co

n
tro

ller
packet_in <Port, Payload>

flow_removed <Match, Statistics>

flow_add <Match, Action>

flow_mod <Match, Action>

Typical OF message flow

OpenVSwitch

• Linux Kernel Datapath, Controller and
Configuration Database

• Can control OF enable hardware switch

• Used as software switch in Xen

• Supports for many standard management
interfaces and protocols (e.g. NetFlow, sFlow,
SPAN, RSPAN, CLI, LACP, 802.1ag)

• Extensions over OpenFlow 1.0 Protocol

FlowER

• Modular platform for build OpenFlow
switches in Erlang

• Concentrate on the Switch and Flow logic,
Flower does the rest.

Provides:

• OpenFlow protocol, connection and data
abstraction

• Tools and algorithms typicaly needed for a
controller implementation

Why Erlang?

You probably already know?!?

• Flexible binary matching
• Fault isolation
• Concurrency
• ….

NIB Library

Data Path (specialized hardware)

Control Path OpenFlow API

Connection Abstraction (Datapath Objects)

Flow Decoder

MAC Learning DB
Controller

D
isp

atch
e

r

FlowEr

Packet De/Encoder

flower_datapath

flower_connection

flower_dispatcher

controller A controller B controller C

Flower Process Achitecture

flower_datapath

flower_connection

Theory of Operation

• flower_datapath module reads events from
network element

• flower_dispatcher forwards events to
interested parties (controller)

• controllers are chainable through events

• controllers implement full switch or parts of it,
generates new event processed by other
controllers or sends answer to datapath

flower_datapath

• Abstracts the ‚real‘ OF enabled network
element

• Manages connection setup and keep-alive

• Controllers register for events from datapath
elements such as join, leave, packet-in

• Controllers messages to datapath elements
such as packet-out or flow-mod

flower_datapath

OpenFlow Packet Decoder
{[#ovs_msg{version = 1,type = features_reply,xid = 3,

msg = #ofp_switch_features{datapath_id = 150876804345,

n_buffers = 256,n_tables = 2,

capabilities = [arp_match_ip,port_stats,table_stats,

flow_stats],

actions = [enqueue,set_tp_dst,set_tp_src,set_nw_tos,

set_nw_dst,set_nw_src,set_dl_dst,set_dl_src,strip_vlan,

set_vlan_pcp,set_vlan_vid,output],

ports = [#ofp_phy_port{port_no = 2,

hw_addr = <<0,80,86,174,0,20>>,

name = <<"eth2">>,config = [],

state = [link_down],

curr = [autoneg,copper],

advertised = [autoneg,copper,'1gb_fd','100mb_fd','100mb_hd',

'10mb_fd','10mb_hd'],

supported = [autoneg,copper,'1gb_fd','100mb_fd','100mb_hd',

'10mb_fd','10mb_hd'],

peer = []},

....

]}}],

<<>>}

Network Information Base (NIB)

Library for implementing:

• Network and network range based lookups

• Routing Tables

Nib = flower_nib4:new(),

Nib1 = flower_nib4:add({<<10,0,0,0>>, 8},

priv1, Nib),

{value, priv1} =

flower_nib4:lookup(<<10,10,10,10>>, Nib).

NIB Library

MAC Learning DB

• MAC address learning and lookup table

• Addres expiry

• Filter for special MAC addresses

• MAC to string formater

MAC Learning DB

Flow Decoder

• Raw packet decoded into all matchable fields:

– Src and Dst MAC Address

– VLAN Id

– L2 Protocol Type: IP, IPv6, ARP, LACP, ...

– IP Protocol Type: UDP, TCP, ...

– Src and Dst IP Address

– Src and Dst Port

–

Flow Decoder

De/encoder for network protocols

Decodes and build packet fragments for:

• IP, TCP and UDP header

• ICMP

• ARP

• more to come...

make_icmp({dest_unreach, pkt_filtered}, VLAN,

DstMAC, SrcMAC, IPSrc, IPDst, Payload).

Packet De/Encoder

OpenFlow Matches

• OpenFlow matches specified as Erlang Term

#ofp_match{wildcards = 4178159,

in_port = none,

dl_src = <<0,0,0,0,0,0>>,

dl_dst = <<0,0,0,0,0,0>>,

dl_vlan = 0,dl_vlan_pcp = 0,

dl_type = ip,nw_tos = 0,

nw_proto = 0,

nw_src = <<127,0,0,1>>,

nw_dst = <<0,0,0,0>>,

tp_src = 0,tp_dst = 0}

Given a decoded flow construct a match on IP
Protocol and Src IP:

IP = <<127,0,0,1>>,

Flow = #flow{dl_type = ip,

nw_src = IP, nw_dst = IP},

encode_ofp_matchflow([{nw_src_mask,32}, dl_type],

Flow).

Controller Implementations

flower_simple_switch:

• Sample learning Layer 2 switch

• Implements MAC learning only

• Less than 50 LOC!

flsc (not included):

• production ready Layer 3 switch and router
in about 1100 LOC

Further Work

• IPv6 support

• Replace the MAC learning database with
something much faster

• Improve and extend NIB Library

• Add load distribution in dispatcher

• …

• Extend Documentation ;-)

Available on Github

Repo: https://github.com/travelping/flower

https://github.com/travelping/flower
https://github.com/travelping/flower
https://github.com/travelping/flower

