
 1

Scaling to Millions of
Simultaneous Connections

Rick Reed
WhatsApp

Erlang Factory SF
March 30, 2012

 2

About ...

Joined WhatsApp in 2011

New to Erlang

Background in performance of C-based
 systems on FreeBSD and Linux

Prior work at Yahoo!, SGI

 3

Overview

The “good problem to have”

Performance Goals

Tools and Techniques

Results

General Findings

Specific Scalability Fixes

 4

The Problem

A good problem, but a problem nonetheless

Growth, Earthquakes, and Soccer!
Msg rates for past four weeks

Mexican earthquake

goals

HT FT

 5

The Problem

Initial server loading: ~200k connections

Discouraging prognosis for growth

Cluster brittle in the face of failures/overloads

 6

Performance Goals

1 Million connections per server … !

Resilience against disruptions under load

Software failures

Hardware failures (servers, network gear)

World events (sports, earthquakes, etc.)

 7

Performance Goals

Our standard configuration

Dual Westmere Hex-core (24 logical CPUs)

100GB RAM, SSD

Dual NIC (user-facing, back-end/distribution)

FreeBSD 8.3

OTP R14B03

 8

Tools and Techniques

System activity monitoring (wsar)

OS-level

BEAM

 9

Tools and Techniques

Processor hardware perf counters (pmcstat)

dtrace, kernel lock-counting, gprof

 10

Tools and Techniques

fprof (w/ and w/o cpu_timestamp)

BEAM lock-counting (invaluable!!!)

 11

Tools and Techniques

Synthetic workload

Good for subsystems with simple interfaces

Limited value for user-facing systems

 12

Tools and Techniques

Tee'd workload

Where side-effects can be contained

Extremely useful for tuning

 13

Tools and Techniques

Diverted workload

Add additional production load to server

DNS via extra IP aliases
TTL issues

IPFW forwarding
Ran into a few kernel panics at high conn counts

 14

Results

Initial bottlenecks appeared around 425k

First round of fixes got us to 1M conns

Fruit was hanging pretty low

 15

Results

Continued attacking similar bottlenecks

Achieved 2M conns about a month later

Put further optimizations on back burner

 16

Results

Began optimizing app code after New Years

Unintentional record attempt in Feb

Peaked at 2.8M conns before we intervened

571k pkts/sec, >200k dist msgs/sec

 17

Results

Still trying to obtain elusive 3M conns

St. Patrick's Day wasn't as lucky as hoped

 18

General Findings

Erlang has awesome SMP scalability

>85% cpu utilization across 24 logical cpus

FreeBSD shines as well

 19

General Findings

CPU% vs. # Conns

 20

General Findings

Contention, contention, contention

From 200k to 2M were all contention fixes

Some issues are internal to BEAM
Some addressable with app changes

Most required BEAM patches

Some required app changes
Especially: partitioning workload correctly

Some common Erlang idioms come at a price

 21

Specific Scalability Fixes

FreeBSD

Backported TSC-based kernel timecounter
gettimeofday(2) calls much less expensive

Backported igb network driver
Had issues with MSI-X queue stalls

sysctl tuning
Obvious limits (e.g., kern.ipc.maxsockets)

net.inet.tcp.tcphashsize=524288

 22

Specific Scalability Fixes

BEAM metrics

Scheduler (%util, csw, waits, sleeps, …)

statistics(message_queues)
Msgs queued, #non-empty queues, longest queue

process_info(message_queue_stats)
Enq/deq/send count & rates (1s, 10s, 100s)

statistics(message_counts)
Aggregation of message_queue_stats

Enable fprof cpu_timestamp for FreeBSD

 23

Specific Scalability Fixes

BEAM metrics (cont.)

Make lock-counting work for larger async
thread counts (e.g., +A 1024)

Add suspend, location, and port_locks options
to erts_debug:lock_counters

Enable/disable process/port lock counting at
runtime

Fix missing accounting for outbound dist bytes

 24

Specific Scalability Fixes

BEAM tuning

+swt low
Avoid scheduler perma-sleep

+Mummc/mmmbc/mmsbc 99999
Prefer mseg over malloc

+Mut 24
Want allocator instance per scheduler

 25

Specific Scalability Fixes

BEAM tuning

+Mulmbcs 32767 +Mumbcgs 1
 +Musmbcs 2047

Want large 2M-aligned mseg allocations to
maximize superpage promotions

Run with real-time scheduling priority

+ssct 1 (via patch; scheduler spin count)

 26

Specific Scalability Fixes

BEAM contention

timeofday lock (esp., timeofday delivery)

Reduced slot traversals on timer wheel

Widened bif timer hash table
Ended up moving bif timers to receive timeouts

Improved check_io allocation scalability

Added prim_file:write_file/3 & /4 (port reuse)

Disable mseg max check

 27

Specific Scalability Fixes

BEAM contention (cont.)

Reduce setopts calls in prim_inet:accept
and in inet:tcp_controlling_process

 28

Specific Scalability Fixes

OTP throughput

Add gc throttling when message queue is long

Increase default dist receive buffer from 4k to
256k (and make configurable)

Patch mnesia_tm to dispatch async_dirty txns
to separate per-table procs for concurrency

Add pg2 denormalized group member lists to
improve lookup throughput

Increase max configurable mseg cache size

 29

Specific Scalability Fixes

Erlang usage

Prefer os:timestamp to erlang:now

Implement cross-node gen_server calls without
using monitors (reduces dist traffic and proc
link lock contention)

Partition ets and mnesia tables and localize
access to smaller number of processes

Small mnesia clusters

 30

Specific Scalability Fixes

Operability fixes

Added [prepend] option to erlang:send

Added process_flag(flush_message_queue)

 31

Questions? Comments?

rr@whatsapp.com

mailto:rr@whatsapp.com

	Title
	Overview
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

